19 resultados para Tomato torrado virus
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Tomato severe rugose virus (ToSRV) is the predominant species of begomovirus in São Paulo State, Brazil, and infects primarily tomato and pepper plants. There is no information about genetic resistance of pepper to this virus, so in this work the reaction of 29 genotypes of Capsicum spp. was evaluated by inoculation of two ToSRV isolates: ToSRV-Sk (isolated from a tomato plant) and ToSRV-PJU (isolated from a pepper plant). For both isolates, two C. annuun genotypes (Catarino Cascabel - México and Silver) showed no symptoms 30 days after inoculation (d.a.i). In a second experiment, these two genotypes were evaluated for 150 d.a.i and, again, no symptoms could be observed. However, the virus was detected by RCA-PCR, indicating that both genotypes are susceptible, but less affected by ToSRV infection. Catarino Cascabel - México and Silver can be indicated for use in breeding programs for resistance of pepper to ToSRV.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A espécie Tomato severe rugose virus (ToSRV) é a predominante em áreas de cultivo de pimentão no Estado de São Paulo. Sua ocorrência na cultura é relativamente recente de modo que não existem informações sobre os danos causados nesta cultura. Os objetivos do presente trabalho foram avaliar a produtividade e qualidade dos frutos de pimentão de três cultivares (Magda, Amanda e Rubia R) quando infectadas com o ToSRV. Verificou-se acentuada redução no número de frutos e menor crescimento das plantas, porém, o ToSRV não influenciou significativamente na massa, diâmetro e comprimento dos frutos. Os resultados obtidos até o momento permitem concluir que o ToSRV causa danos em pimentão e que há necessidade de estudos visando resistência ao ToSRV.
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Plant responses against pathogens cause up-and downward shifts in gene expression. To identify differentially expressed genes in a plant-virus interaction, susceptible tomato plants were inoculated with the potyvirus Pepper yellow mosaic virus (PepYMV) and a subtractive library was constructed from inoculated leaves at 72 h after inoculation. Several genes were identified as upregulated, including genes involved in plant defense responses (e. g., pathogenesis-related protein 5), regulation of the cell cycle (e. g., cytokinin-repressed proteins), signal transduction (e. g., CAX-interacting protein 4, SNF1 kinase), transcriptional regulators (e. g., WRKY and SCARECROW transcription factors), stress response proteins (e. g., Hsp90, DNA-J, 20S proteasome alpha subunit B, translationally controlled tumor protein), ubiquitins (e. g., polyubiquitin, ubiquitin activating enzyme 2), among others. Downregulated genes were also identified, which likewise display identity with genes involved in several metabolic pathways. Differential expression of selected genes was validated by macroarray analysis and quantitative real-time polymerase chain reaction. The possible roles played by some of these genes in the viral infection cycle are discussed.
Resumo:
Weeds can act as important reservoirs for viruses. Solanum americanum (Black nightshade) is a common weed in Brazil and samples showing mosaic were collected from sweet pepper crops to verify the presence of viruses. One sample showed mixed infection between Cucumber mosaic virus (CMV) and Potato virus Y (PVY) and one sample showed simple infection by PVY. Both virus species were transmitted by plant extract and caused mosaic in tomato (Solanum lycopersicum cv. Santa Clara), sweet pepper (Capsicum annuum cv. Magda), Nicotiana benthamiana and N. tabaccum TNN, and local lesions on Chenopodium quinoa, C. murale and C. amaranticolor. The coat protein sequences for CMV and PVY found in S. americanum are phylogenetically more related to isolates from tomato. We conclude that S. americanum can act as a reservoir for different viruses during and between sweet pepper crop seasons.
Resumo:
Tomato products are a key component of the Mediterranean diet, which is strongly related to a reduced risk of cardiovascular events. The effect of cooking time (15, 30, 45, and 60 min) and the addition of extra virgin olive oil (5 and 10%) on the phenolic content of tomato sauces was monitored using liquid chromatography coupled to tandem mass spectrometry. Concentration of phenolics in the tomato sauces decreased during the cooking process, with the exception of caffeic acid and tyrosol. The main degradation observed was the oxidation of quercetin, since the hydroxy-function at the C-ring of this flavonoid is not blocked by a sugar moiety, unlike rutin. Higher levels of virgin olive oil in tomato sauce seemed to enhance the extraction of phenolic compounds from the tomato, leading to higher phenolic contents in the sauces. Thus, the food matrix containing the phenolic compounds plays a crucial role in determining their accessibility.