10 resultados para Timing code

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigated how the timing of the administration of estradiol benzoate (EB) impacted the synchronization of ovulation in fixed-time artificial insemination protocols of cattle. To accomplish this, two experiments were conducted, with EB injection occurring at different times: at withdrawal of the progesterone-releasing (N) intravaginal device or 24 h later. The effectiveness of these times was compared by examining ovarian follicular dynamics (Experiment 1, n = 30) and conception rates (Experiment 2, n = 504). In Experiment 1, follicular dynamics was performed in 30 Nelore cows (Bos indicus) allocated into two groups. on a random day of the estrous cycle (Day 0), both groups received 2 mg of EB i.m. and a P4-releasing intravaginal device, which was removed on Day 8, when 400 IU of eCG and 150 mu g of PGF were administered. The control group (G-EB9; n = 15) received 1 mg of EB on Day 9, while Group EB8 (G-EB8; n = 15) received the same dose a day earlier. Ovarian ultrasonographic evaluations were performed every 8 h after device removal until ovulation. The timing of EB administration (Day 8 compared with Day 9) did affect the interval between P4 device removal to ovulation (59.4 +/- 2.0 h compared with 69.3 +/- 1.7 h) and maximum diameter of dominant (1.54 +/- 0.06 a cm compared with 1.71 +/- 0.05 b cm, P = 0.03) and ovulatory (1.46 +/- 0.05 a cm compared with 1.58 +/- 0.04 b cm, P < 0.01) follicles. In Experiment 2,504 suckling cows received the same treatment described in Experiment 1, but insemination was performed as follows: Group EB8-AI48h (G-EB8-AI48h; n = 119) and Group EB8-AI54h (G-EB8-AI54h; n = 134) received 1 mg of EB on Day 8 and FrAI was performed, respectively, 48 or 54 h after P4 device removal. Group EB9-AI48h (G-EB9-AI48h; n = 126) and Group EB9-AI54h (G-EB9-AI54h n = 125) received the same treatments and underwent the same FTAI protocols as G-EB8-AI48h and G-EB8-AI54h, respectively; however, EB was administered on Day 9. Conception rates were greater (P < 0.05) in G-EB9-AI54h 163.2% (79/125) a], G-EB9-AI48h [58.7% (74/126) a] and G-EB8-AI48h [58.8% (70/119) a] than in G-EB8-AI54h [34.3% (46/134) b]. We concluded that when EB administration occurred at device withdrawal (D8), the interval to ovulation shortened and dominant and ovulatory follicle diameters decreased. Furthermore, when EB treatment was performed 24 h after device removal, FTAI conducted at either 48 or 54 h resulted in similar conception rates. However, EB treatment on the same day as device withdrawal resulted in a lesser conception rate when FTAI was conducted 54 h after device removal. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two experiments were performed to test the hypothesis that elevated progesterone concentrations impair pregnancy rate to timed artificial insemination (TAI) in postpuberal Nelore heifers. In Experiment 1, postpuberal Nelore heifers (n = 398) received 2 mg estradiol benzoate (EB) and either a new progesterone-releasing intravaginal device containing 1.9 g of progesterone (CIDR) (first use) or a CIDR previously used for 9 d (second use) or for 18 d (third use) on Day 0, 12.5 mg prostaglandin F-2 alpha (PGF(2 alpha)) on Day 7, 0.5 mg estradiol cypionate (ECP) and CIDR withdrawal on Day 9, and TAI on Day 11. Largest ovarian follicle diameter was determined on Day 11. The third-use CIDR treatment increased largest ovarian follicle diameter and pregnancy rate. Conception to TAI was reduced in heifers with smaller follicles in the first- and second-use CIDR treatments, but not in the third-use CID treatment. In Experiment 2, postpuberal Nelore heifers received the synchronization treatment described in Experiment 1 or received 12.5 mg PGF2. on Day 9 rather than Day 7. In addition, 50% of heifers received 300 IU equine chorionic gonadotropin (eCG) on Day 9. Heifers were either TAI (Experiment 2a; n = 199) or Al after detection of estrus (Experiment 2b; n = 125 of 202). In Experiment 2a, treatment with cCG increased pregnancy rate to TAI in heifers that received PGF2. on Day 9 but not on Day 7 and in heifers that received a first-use CIDR but not in heifers that received a third-use CIDR. Treatments did not influence reproductive performance in Experiment 2b. In summary, pregnancy rate to TAI in postpuberal Nelore heifers was optimized when lower concentrations of cxogcnous progesterone were administered, and eCG treatment was beneficial in heifers expected to have greater progesterone concentrations. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this road-crossing simulation study, we assessed both participant's ability to visually judge whether or not they could cross a road, and their adaptive walking behavior. To this end, participants were presented with a road inside the laboratory on which a bike approached with different velocities from different distances. Eight children aged 5-7, ten children aged 10-12, and ten adults were asked both to verbally judge whether they could cross the road, and to actually walk across the road if possible. The results indicated that the verbal judgments were not similar to judgments to actually cross the road. With respect to safety and accuracy of judgments, groups did not differ from each other, although the youngest group tended to be more cautious. All groups appeared to use a strategy to cross the road based both on the distance and the velocity of the approaching bike. Young children waited longer on the curb before crossing the road than older children and adults. All groups adjusted their crossing time to the time-to-arrival of the bike. These findings are discussed in relation to the ecological psychological approach and the putative dissociation between vision for perception (i.e. verbal judgment) and vision for action (i.e. actual crossing). (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The code STATFLUX, implementing a new and simple statistical procedure for the calculation of transfer coefficients in radionuclide transport to animals and plants, is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. Flow parameters were estimated by employing two different least-squares procedures: Derivative and Gauss-Marquardt methods, with the available experimental data of radionuclide concentrations as the input functions of time. The solution of the inverse problem, which relates a given set of flow parameter with the time evolution of concentration functions, is achieved via a Monte Carlo Simulation procedure.Program summaryTitle of program: STATFLUXCatalogue identifier: ADYS_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADYS_v1_0Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandLicensing provisions: noneComputer for which the program is designed and others on which it has been tested: Micro-computer with Intel Pentium III, 3.0 GHzInstallation: Laboratory of Linear Accelerator, Department of Experimental Physics, University of São Paulo, BrazilOperating system: Windows 2000 and Windows XPProgramming language used: Fortran-77 as implemented in Microsoft Fortran 4.0. NOTE: Microsoft Fortran includes non-standard features which are used in this program. Standard Fortran compilers such as, g77, f77, ifort and NAG95, are not able to compile the code and therefore it has not been possible for the CPC Program Library to test the program.Memory, required to execute with typical data: 8 Mbytes of RAM memory and 100 MB of Hard disk memoryNo. of bits in a word: 16No. of lines in distributed program, including test data, etc.: 6912No. of bytes in distributed Program, including test data, etc.: 229 541Distribution format: tar.gzNature of the physical problem: the investigation of transport mechanisms for radioactive substances, through environmental pathways, is very important for radiological protection of populations. One such pathway, associated with the food chain, is the grass-animal-man sequence. The distribution of trace elements in humans and laboratory animals has been intensively studied over the past 60 years [R.C. Pendlenton, C.W. Mays, R.D. Lloyd, A.L. Brooks, Differential accumulation of iodine-131 from local fallout in people and milk, Health Phys. 9 (1963) 1253-1262]. In addition, investigations on the incidence of cancer in humans, and a possible causal relationship to radioactive fallout, have been undertaken [E.S. Weiss, M.L. Rallison, W.T. London, W.T. Carlyle Thompson, Thyroid nodularity in southwestern Utah school children exposed to fallout radiation, Amer. J. Public Health 61 (1971) 241-249; M.L. Rallison, B.M. Dobyns, F.R. Keating, J.E. Rall, F.H. Tyler, Thyroid diseases in children, Amer. J. Med. 56 (1974) 457-463; J.L. Lyon, M.R. Klauber, J.W. Gardner, K.S. Udall, Childhood leukemia associated with fallout from nuclear testing, N. Engl. J. Med. 300 (1979) 397-402]. From the pathways of entry of radionuclides in the human (or animal) body, ingestion is the most important because it is closely related to life-long alimentary (or dietary) habits. Those radionuclides which are able to enter the living cells by either metabolic or other processes give rise to localized doses which can be very high. The evaluation of these internally localized doses is of paramount importance for the assessment of radiobiological risks and radiological protection. The time behavior of trace concentration in organs is the principal input for prediction of internal doses after acute or chronic exposure. The General Multiple-Compartment Model (GMCM) is the powerful and more accepted method for biokinetical studies, which allows the calculation of concentration of trace elements in organs as a function of time, when the flow parameters of the model are known. However, few biokinetics data exist in the literature, and the determination of flow and transfer parameters by statistical fitting for each system is an open problem.Restriction on the complexity of the problem: This version of the code works with the constant volume approximation, which is valid for many situations where the biological half-live of a trace is lower than the volume rise time. Another restriction is related to the central flux model. The model considered in the code assumes that exist one central compartment (e.g., blood), that connect the flow with all compartments, and the flow between other compartments is not included.Typical running time: Depends on the choice for calculations. Using the Derivative Method the time is very short (a few minutes) for any number of compartments considered. When the Gauss-Marquardt iterative method is used the calculation time can be approximately 5-6 hours when similar to 15 compartments are considered. (C) 2006 Elsevier B.V. All rights reserved.