2 resultados para Tibetan

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change has significantly influenced vegetation dynamics on the Tibetan Plateau (TP). Past research mainly focused on vegetation responses to temperature variation and water stress, but the influence of sunshine duration on NDVI and vegetation phenology on the TP is not well understood. In this study, NDVI time series from 1982-2008 were used to retrieve spatiotemporal vegetation dynamics on the TP. Empirical orthogonal function (EOF) analysis was conducted to understand the spatiotemporal variations of NDVI. The Start of Season (SOS) was estimated from NDVI time series with a local threshold method. The first EOF, accounting for 35.1% of NDVI variations on the TP, indicates that NDVI variations are larger in areas with shorter sunshine duration. The needle-leaved forest and shrub in the southeastern TP are more sensitive to sunshine duration anomalies (p < 0.01) than broad-leaved forest, steppe, and meadow due to spatial and altitudinal distribution of sunshine duration and vegetation types. The decrease in sunshine duration for the growing season on the TP has resulted in a decreased NDVI trend in some areas of southeastern TP (p ranging from 0.32-0.05 with threshold ranging from 0.05 to 0.25) in spite of the overall NDVI increase. SOS dynamics in most parts of the TP were mainly related to temperature variability, with precipitation and sunshine duration playing a role in a few regions. This study enhances our understanding of vegetation responses to climatic change on the TP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Within a community, species may germinate at different times so as to mitigate competition and to take advantage of different aspects of the seasonal environment (temporal niche differentiation). We illustrated a hypothesis of the combined effects of abiotic and biotic competitive factors on germination timing and the subsequent upscale effects on community assembly. We estimated the germination timing (GT) for 476 angiosperm species of the eastern Tibetan Plateau grasslands under two light treatments in the field: high (i.e. natural) light and low light. We also measured the shift in germination timing (SGT) across treatments for all species. Furthermore, we used phylogenetic comparative methods to test if GT and SGT were associated with seed mass, an important factor in competitive interactions. We found a significant positive correlation between GT and seed mass in both light treatments. Additionally, small seeds (early germinating seeds) tended to germinate later and large seeds (late germinating seeds) tended to germinate earlier under low light vs high light conditions. Low light availability can reduce temporal niche differentiation by increasing the overlap in germination time between small and large seeds. In turn, reduced temporal niche differentiation may increase competition in the process of community assembly.