54 resultados para TiO(2)
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Raman spectroscopy and Electron Paramagnetic Resonance (EPR) studies were performed on a series of V(2)O(5)/TiO(2) catalysts prepared by a modified sol-gel method in order to identify the vanadium species. Two species of surface vanadium were identified by Raman measurements, monomeric vanadyls and polymeric vanadates. Monomeric vanadyls are characterized by a narrow Raman band at 1030 cm(-1) and polymeric vanadates by two broad bands in the region from 900 to 960 cm(-1) and 770 to 850 cm(-1). The Raman spectra do not exhibit characteristic peaks of crystalline V(2)O(5). These results are in agreement with those of X-ray Diffractometry (XRD) and Fourier Transform Infrared (FT-IR) previously reported (C.B. Rodella et al., J. Sol-Gel Sci. Techn., submitted). At least three families of V(4+) ions were identified by EPR investigations. The analysis of the EPR spectra suggests that isolated V(4+) ions are located in sites with octahedral symmetry substituting for Ti(4+) ions in the rutile structure. Magnetically interacting V(4+) ions are also present as pairs or clusters giving rise to a broad and structureless EPR line. At higher concentration of V(2)O(5), a partial oxidation of V(4+) to V(5+) is apparent from the EPR results.
Resumo:
Samples of the V(2)O(5)/TiO(2) system were prepared by the sol-gel method and calcined at different temperatures. Surface species of vanadium, their dispersion, as well as the structural evolution of the system were analysed by XRD, Raman, EPR, and XPS techniques. The results of XRD showed the evolution of TiO(2) from anatase phase to rutile. phase. The Raman spectra for calcination temperatures up to 500 degreesC showed a good dispersion of vanadium over titania in the form of monomeric vanadyl groups (V(4+)) and polymeric vanadates (V(5+)). At least three families of V4+ ions were identified by EPR investigations. Two kinds of isolated V(4+) species are placed in sites of octahedral symmetry, substituting Ti(4+) in the rutile phase. The third is formed by pairs of V(4+) species on the surface of titania. Above 500 degreesC part of superficial V(4+) is inserted into the,matrix of titania and part is oxidized to V(5+). The XPS results showed that the V/Ti ratio rises with increasing calcination temperature, indicating a smaller dispersion of vanadium.
Resumo:
The effects of silver insertion on the TiO(2) photocatalytic activity for the degradation of diclofenac potassium were reported here. Techniques such as X-ray diffraction, scanning electron microscopy and UV-Vis spectroscopy were used to comprehend the relation between structure and properties of the silver-modified TiO(2), thin films obtained by the sol-gel method. The lattice parameters and the crystallinity of TiO(2) anatase phase were affected by inserted silver, and the film thickness increased about 4 nm for each 1 wt.% of silver inserted. The degradation of diclofenac potassium and by-products reached an efficiency of 4.6 mg(C) W(-1) when the material was modified with silver. Although the first step of degradation involves only the photochemical process related to the loss of the chlorine and hydrogen atoms. This cyclization reaction leads to the formation of intermediate, which degradation is facilitated by the modified material. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
BaTiO(3) powders were prepared through mechanical activation chemistry and analyzed by Rietveld refinement with X-ray diffraction data. Raw BaCO(3) and TiO(2) powders were dry milled for 5 and 20 h and then calcinated for 2 and 4 h at 800 degrees C. The milling process was found to have broken up the BaCO(3) and TiO(2) crystals into smaller crystals and formed only small amounts ( 1.5 wt%) of BaTiO(3). Subsequence calcinations for 2 and 4 h at 800 degrees C successfully produced large amounts (>97.7 wt%) of BaTiO(3) crystals. The calcination process also generated microstrains and crystallite-size anisotropy in BaTiO(3). An increase in the calcination time from 2 to 4 h increased the BaTiO(3) weight percentage and the crystal lite-shape anisotropy, but decreased the tetragonal distortion anisotropic microstrains in BaTiO(3) crystals. (C) 2008 International Centre for Diffraction Data.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Theoretical analysis based on the Hartree-Fock method were performed in order to study the stoichiometric TiO(2) (110) surface and the vanadium substituted system. The Pople with polarization 3-21G* basis set level was used. The TiO(2) (110) surface was modeled using a (TiO(2))(15) cluster model. In order to take into account the finite size of the cluster, we have studied two different models: the point charge and the hydrogen saturated methodologies. The charge values used in the point charge calculations were optimized. The density of states, orbital self-consistend field (SCF) energies, and Mulliken charge values were analyzed. The method and model's dependence on the analyzed results are discussed. The theoretical results are compared with available experimental data. (C) 2001 John Wiley & Sons, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work describes a modified sol-gel method for the preparation of V 2O 5/TiO 2 catalysts. The samples have been characterized by N 2 adsorption at 77K, x-ray diffractometry (XRD) and Fourier Transform Infrared (FT-IR). The surface area increases with the vanadia loading from 24 m 2 g -1, for pure TiO 2, to 87 m 2 g -1 for 9wt.% of V 2O 5. The rutile form is predominant for pure TiO 2 but became enriched with anatase phase when vanadia loading is increased. No crystalline V 2O 5 phase was observed in the catalysts diffractograms. Two species of surface vanadium observed by FT-IR spectroscopy a monomeric vanadyl and polymeric vanadates, the vanadyl/vanadate ratio remains practically constant.
Resumo:
This paper describes results of the photo-degradation of three types of soluble and emulsive cutting fluids in an aqueous medium, using TiO2 as catalyst in suspension and UV radiation. The TiO2 proved to be an effective catalyst for the degradation of the cutting fluids investigated. The degradation rate depends on pH and nature of the fluids. The best performance of catalyst was observed at pH 8.0 for all the fluids when most of 70% of the organic load was decomposed. ©2006 Sociedade Brasileira de Química.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A solid state system having the configuration WO 3/Ormolyte/CeO2-TiO2 has been assembled. Syntheses routes for tungsten oxide WO3, and cerium-titanium CeO 2-TiO2 oxide sols, were developed. A novel solid electrolyte - Ormolyte is reported, which were obtained by the sol-gel process, they have a chemical stability due to the covalent bonds between the inorganic and organic phase, and were prepared with different [O]/[L] ratios, being the best for [O]/[L]=15. The variation of transmittance of the electrochromic device using the ormolyte [O]/[L]=15 was 35% (colored state) and 77% (bleached state).
Resumo:
The effect of calcination temperature during the formation of the solid solution Sn(0.9)Ti(0.1)O(2) doped with 1.00 mol % CoO and 0.05 mol % Nb(2)O(5) is presented. The structural characteristics of this system were studied using X-ray diffraction, and the changes in phase formation were analyzed using the Rietveld method. With an increase in calcination temperature, there is increasing miscibility of Ti into the (Ti,Sn)O(2) phase and near 1000 degrees C, and the remaining TiO(2) (anatase) was transformed into the rutile phase. The sintering process, monitored using dilatometry, suggests two mass transport mechanisms, one activated close to 900 degrees C associated with the presence of TiO(2) (anatase) and the second mechanism, occurring between 1200 and 1300 degrees C, is attributed to a faster grain boundary diffusion caused by oxygen vacancies. (C) 2008 International Centre for Diffraction Data.
Resumo:
Porosity in starch consolidation casting technique is rightly related to original size and morphology of starch granules, leaving a pore structure after burning out. This work reports the results for the addition of different native potato and corn starch proportions in suspension,; with TiO(2) (rutile) powder. Gelling temperature have been defined after observation under light microscopy using a heating stage. Analysis of porous network and isolated pores have been clone from images of samples surfaces obtained by depth from focus reconstruction, revealing a qualitative correlation of pores characteristics and starches additions in suspensions, suggesting that the presence of isolated or interconnected pores can be handled by starches selection to control the amylopectin and amylose contents in slurries. Also, the analysis of porous fraction distribution shows no consistent pattern through specimens' volume according to starches in mixtures.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)