77 resultados para Thiophene adsorption
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
2-Aminothiazole covalently attached to a silica gel surface was prepared in order to obtain an adsorbent for Hg(II) ions having the following characteristics: good sorption capacity, chemical stability under conditions of use, and, especially, high selectivity. The accumulation voltammetry of mercury(II) was investigated at a carbon paste electrode chemically modified with silica gel functionalized with 2-aminothiazole (SIAMT-CPE). The repetitive cyclic voltammogram of mercury(II) solution in the potential range -0.2 to + 0.6 V versus Ag/AgCl (0.02 mol L-1 KNO3; V = 20 mV s(-1)) show two peaks one at about 0.1 V and other at 0.205 V. The anodic wave peak at 0.205 V is well defined and does not change during the cycles and it was therefore further investigated for analytical purposes using differential pulse anodic stripping voltammetry in differents supporting electrolytes. The mercury response was evaluated with respect to pH, electrode composition, preconcentration time, mercury concentration, cleaning solution, possible interferences and other variables. The precision for six determinations (n = 6) of 0.02 and 0.20 mg L-1 Hg(II) was 4.1 and 3.5% (relative standard deviation), respectively. The detection limit was estimated as 0.10 mu g L-1 mercury(II) by means of 3:1 current-to-noise ratio in connection with the optimization of the various parameters involved and using the highest-possible analyser sensitivity. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
There is little information on nickel adsorption by Brazilian soils. The objective of this experiment was to determine the effect of pH, organic matter, and iron oxides on nickel adsorption by three soils: a clayey Anionic Rhodic Acrudox, a sandy clay loam Anionic Xanthic Acrudox, and a clayey Rhodic Hapludalf. Soil samples were collected from the 0-0.2 in layer and treated to eliminate organic matter and iron oxides. The nickel adsorption was evaluated in the original samples and in those treated to remove organic matter and to remove both, organic matter and iron oxides, using 2 g soil + 20 mL of 0.01 mol L-1 CaCl2 solution containing 5 mg L-1 Ni, pH varying from 3.5 to 7.5. The nickel adsorption decreased with the elimination of organic matter. For the samples without organic matter and iron oxides, adsorption decreased only in the Anionic Rhodic Acrudox. The pH was the main factor involved in nickel adsorption variation, and for soil samples without organic matter and iron oxides, the maximum adsorption occurred at higher pH values.
Resumo:
As curvaturas do relevo promovem pedoambientes específicos que condicionam os atributos químicos e mineralógicos do solo e podem auxiliar na definição de zonas específicas de manejo. O fósforo (P) é um dos principais elementos limitantes ao desenvolvimento e longevidade do canavial. O teor e a constituição mineralógica da fração argila assumem papel importante na disponibilidade do P, sendo que a gibbsita (Gb), quando presente em altas proporções no solo, pode ser a principal responsável pela sua adsorção e indisponibilidade. Investigaram-se as relações e a variabilidade espacial da adsorção de P e a ocorrência de caulinita (Ct) e gibbsita na fração argila de um Argissolo Vermelho-Amarelo eutrófico originado de rochas areníticas sob diferentes curvaturas do relevo em área sob cultivo de cana-de-açúcar. Duas malhas de 1 ha foram delimitadas numa área côncava e outra área convexa. Foram coletadas 121 amostras em cada área para realização das análises granulométricas, químicas e mineralógicas. A capacidade máxima de adsorção de P foi obtida em seis amostras escolhidas ao acaso em cada área. Os resultados foram submetidos às análises estatísticas descritiva e geoestatística. Os menores valores médios de P disponível encontraram-se na área convexa. Nesta área, a proporção de gibbsita, expressa pelos valores da razão [Gb/(Gb+Ct)] e os valores de capacidade máxima de adsorção de fósforo foram maiores do que na área côncava.
Resumo:
Boron adsorption by soil is the main phenomenon that affects its availability to plants. This, the present study investigated the effect of liming on B adsorption by lowland soils of Parana State, and to correlate these values with the physical and chemical properties of the soils. Surface samples of three lowland soils [Gleissolo Haplico (GX), Plintossolo Haplico (FX) and Cambissolo Haplico (CX)], with different origin material and physicochemical properties were used. Samples with or without liming application were incubated during 60 days. Boron adsorption was accomplished by shaking 4.0g soil samples, for 24 h, with 20 mL of 0.01 mol L-1 CaCl2 solution containing different concentrations of B (0, 1, 2, 4, 8 and 16 mg L-1). Sorption was fitted to non-linear form of the Langmuir adsorption isotherm. The adsorption isotherms indicated that the B adsorption increased with its increasing concentration in the equilibrium solution. Maximum adsorption capacity of B ranged from 3.0 to 13.9 mg kg(-1) (without liming) and 14.7 to 35.7 mg kg(-1) (with liming). Liming increased the amount of adsorbed B in Gleissolo Haplico and Plintossolo Haplico soils, although the bonding energy has decreased. The amount of adsorbed B by Cambissolo Haplico soil was not affected by liming application. The most important soil properties affecting the B adsorption in lowland soils were pH, clay content, exchangeable aluminum and iron oxide contents.
Resumo:
Dendritic nucleic acids are highly branched and ordered molecular structures, possessing numerous single-stranded oligonucleotide arms, which hold great promise for enhancing the sensitivity of DNA biosensors. This article evaluates the interfacial behavior and redox activity of nucleic acid dendrimers at carbon paste electrodes, in comparison to DNA. Factors influencing the adsorption behavior, including the adsorption potential and time, solution conditions, or dendrimer concentration, are explored. The strong adsorption at the anodically pretreated carbon surface is exploited for an effective preconcentration step prior to the chronopotentiometric measurement of the surface species. Coupled with the numerous guanine oxidation sites, such stripping protocol offers remarkably low detection limits (e.g., 3 pM or 2.4 femtomole of the I-layer dendrimer following a 15 min accumulation). The new observations bear important implications upon future biosensing applications of nucleic dendrimers.
Resumo:
The isotherms of adsorption of MeX2 (Me = Cu2+, Co2+; X = Cl-, Br-, ClO4-) by silica gel chemically modified with 2-mercaptoimidazole (SiMI) were studied in acetone and ethanol solutions, at 25 degrees C. Covalently attached 2-mercaptoimidazole molecule to silica gel surface adsorbs MeX2 from solvent by forming a surface complex. The metal is bonded to the surface through the nitrogen atom of attached 2-mercaptoimidazole. At low loading, the electronic and ESR spectral parameters indicated that the Cu2+ complexes are in a distorted-tetragonal symmetry field. The d-d electronic transition spectra showed that for Cu(ClO4)(2) complex, the peak of absorption did not change for any degree of metal loading and for Cl- and Br- complexes, the peak maxima shifted to higher energy with lower metal loading. The CoX2(X = Cl-, Br-, ClO4-) analogues possess a distorted-tetrahedral field.
Resumo:
In this paper we report on the synthesis, characterization, and adsorption properties of the first 3-amino-1,2,4-triazole-modified porous silsesquioxane (ATPS). The isotherms of adsorption of MX2 (M = Cu(II), Co(II); X = Cl-, Br-, ClO4-) by ATPS were studied in ethanol and aqueous solutions at 298 K. The results showed that there is a good fit between the experimental data and the Langmuir isotherm. The adsorption capacity in both solvents followed the sequence Cu(II) >> Co(II). The lowest adsorption for Co(II) should be related to the largest hydration volume, which obstructs the adsorption capacity of the surface, and consequently causes a decrease in the number of cations adsorbed. For the salts with different anions the sequence was MCl2 > MBr2 > M(ClO4)2 in both solvents. The low affinity for M(ClO4)(2) toward the solid phase is a consequence of the poorer coordination ability of the ClO4-. Adsorptions from ethanol solutions were higher than those from aqueous solutions due to the higher polarity of water, which can more strongly solvate the solute and the basic sites on the surface. The following adsorption capacities (in mmol g(-1)) were determined: 0.24 (aq) and 0.84 (eth) for CuCl2, 0.09 (aq) and 0.16 (eth) for CuBr2, and 0.08 (aq) and 0.11 (eth) for Cu(ClO4)(2); 0.02 (aq) and 0.07 (eth) for CoCl2, 0.02 (aq) and 0.06 (eth) for CoBr2, and 0.01 (aq) and 0.05 (eth) for Co(ClO4)(2). (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work describes the synthesis of octa (hydridodimethylsiloxyl) octasilsesquioxane, (Q(8)M(8)(H)) and its thermolysis in pyridine media. The new compound called CPy was characterized by FTIR, NMR-MAS, XRD, MEV spectroscopies and TGA analyses. These results indicate that silsesquioxanes cages (octanion) are maintained after thermal treatment. A cleavage of vertex siloxy groups yielding a nanocomposite with polymeric nature is proposed. Its structure and morphology allows the adsorption/inclusion of electrochemical mediator, toluidine blue O. The square wave voltammetry analysis of resulting composite (CPyTBO) exhibits two redox couple with a formal potential (E-0') 0.1 V and 0.26 V to I and II redox couples respectively, (Britton-Robinson (BR) buffer pH 3, v = 10 Hz versus SCE) ascribed to a monomer and dimmer of the toluidine blue species. This paper opens the use of spherosiloxane derived materials a's host for small molecules in the electrochemical field. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The isotherms of adsorption of CuX2 (X = Cl-, Br, ClO4-,) by silica gel chemically modified with thiazolidine-2-thione were studied in acetone (ac) and ethanol (eth) solutions at 25 degrees C. The following equilibrium constants (in 1 mol(-1)) were determined: a) CuCl2, 1.9 x 10(3) (ac), 1.6 x 10(3) (eth); b) CuBr2, 1.7 x 10(3) (ac), 1.2 x 10(3) (eth); c) Cu(ClO4)(2), 1.1 x 10(3) (ac), 1.0 x 10(3) (eth). The electron spin resonance spectra of the surface complexes indicate a tetragonal distorted structure in the case of lower degrees of metal loading on the chemically modified surface. The d-d electronic transition spectra show that for the ClO4- complex, the peak of absorption did not change for any degree of metal loading, and for Cl- and Br complexes, the peak maxima shift to higher energy with lower metal loading.
Resumo:
The isotherms of adsorption of MX2 (M = Cu2+, Co2+; X = Cl-, Br-, ClO4) by silica gel chemically modified with 3-amino-1,2,4-triazole (SiATR) were studied in acetone and ethanol solutions, at 25 degrees C. The 3-amino-1,2,4-triazole molecule, covalently bound to the silica gel surface, adsorbs MX2 from solvent by forming a surface complex. At low loading, the electronic and electron spin resonance spectral parameters indicated that the Cu2+ complexes have distorted tetragonal symmetry. The CoX2 (X = Cl-, Br-) analogues exhibit a distorted-tetrahedral geometry, whilstthe (SiATR)mCo)ClO4)(2) complex has a tetragonally distorted octahedral geometry, with four equatorial nitrogen atoms around the cobalt. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The material octakis[3-(3-amino- 1,2,4-triazole)propyl]octasilsesquioxane (ATZ-SSQ) was synthesized and its potential was assessed for Cu(II), Ni(II), Co(II), Zn(II) and Fe(III) from their ethanol solutions and compared with related 3-amino-1,2,4-triazole-propyl modified silica gel (ATZ-SG). The adsorption was performed using a batchwise process and both organofunctionalized surfaces showed the ability to adsorb the metal ions from ethanol solution. The Langmuir model allowed to describe the sorption of the metal ions on ATZ-SSQ and ATTZ-SG in a satisfactory way. The equilibrium is reached very quickly Q min) for ATZ-SSQ, indicating that the adsorption sites are well exposed. The maximum metal ion uptake values for Cu(II), Co(II), Zn(II), Ni(II) and Fe(III) were 0.86, 0.09, 0.19, 0.09 and 0.10 mmol g(-1), respectively, for the ATZ-SSQ, which were higher than the corresponding values 0.21, 0.04, 0.14, 0.05 and 0.07 mmol g(-1) achieved with the ATZ-SG. In order to obtain more information on the metal-ligand interaction of the complexes on the surface of the ATZ-SSQ, Cu(II) was used as a probe to determine the arrangements of the ligands around the central metal ion by electron spin resonance (ESR). The ATZ-SSQ was used for the separation and determination (in flow using a column technique) of the metal ions present in commercial ethanol. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An investigation was made on the adsorption and kinetics of photodegradation of potassium hydrogenphthalate in an aqueous suspension of TiO2. Two models, Langmuir and Freundlich, were used to describe the adsorption process and the model proposed by Langmuir-Hinshelwood (L-H) was employed to describe the kinetics of the photodecomposition reactions of hydrogenphthalate. The results of the adsorptions were fitted to the models proposed by Langmuir and Freundlich. Adsorption was found to be a function of the temperature, with adsorption capacity increasing from 2.4 to 4.5 mg/g when the temperature rose from 20 to 30 degrees C. The kinetic model indicates that the rate constant, k, of the first order reaction, is high in the 10.0 to 100 mg/l interval, which is coherent with the low value of the adsorption constant, K. The results fitted to the L-H model led to an equation that, within the range of concentrations studied here, theoretically allows one to evaluate the photodegradation rate. (c) 2005 Elsevier Ltd. All rights reserved.