17 resultados para Thermal limits
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The neotropical millipede, Gymnostreptus olivaceus, lives at ambient temperatures of about 20°C. Its thermal tolerance was tested after acclimation to lower and higher temperatures as occurs under winter and summer conditions in the south and southeast regions of Brazil. An increase in tolerance to low temperatures was found in adapted specimens. The ecological aspects of this capability are discussed.
Resumo:
Thermal and water balance are coupled in anurans, and species with particularly permeable skin avoid overheating more effectively than minimizing variance of body temperature. In turn, temperature affects muscle performance in several ways, so documenting the mean and variance of body temperature of active frogs can help explain variation in behavioral performance. The two types of activities studied in most detail, jumping and calling, differ markedly in duration and intensity, and there are distinct differences in the metabolic profile and fiber type of the supporting muscles. Characteristics of jumping and calling also vary significantly among species, and these differences have a number of implications that we discuss in some detail throughout this paper. One question that emerges from this topic is whether anuran species exhibit activity temperatures that match the temperature range over which they perform best. Although this seems the case, thermal preferences are variable and may not necessarily reflect typical activity temperatures. The performance versus temperature curves and the thermal limits for anuran activity reflect the thermal ecology of species more than their systematic position. Anuran thermal physiology, therefore, seems to be phenotypically plastic and susceptible to adaptive evolution. Although generalizations regarding the mechanistic basis of such adjustments are not yet possible, recent attempts have been made to reveal the mechanistic basis of acclimation and acclimatization. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Energy policies and technological progress in the development of wind turbines have made wind power the fastest growing renewable power source worldwide. The inherent variability of this resource requires special attention when analyzing the impacts of high penetration on the distribution network. A time-series steady-state analysis is proposed that assesses technical issues such as energy export, losses, and short-circuit levels. A multiobjective programming approach based on the nondominated sorting genetic algorithm (NSGA) is applied in order to find configurations that maximize the integration of distributed wind power generation (DWPG) while satisfying voltage and thermal limits. The approach has been applied to a medium voltage distribution network considering hourly demand and wind profiles for part of the U.K. The Pareto optimal solutions obtained highlight the drawbacks of using a single demand and generation scenario, and indicate the importance of appropriate substation voltage settings for maximizing the connection of MPG.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The use of mean values of thermal and electric demand can be justifiable for synthesising the configuration and for estimating the economic results because it simplifies the analysis in a preliminary feasibility study of a cogeneration plant. For determining the cogeneration scheme that best fits the energetic needs of a process several cycles and combinations must be considered, and those technically feasible will be analysed according to economic models. Although interesting for a first approach, this procedure do not consider that the peaks and valleys present in the load patterns will impose additional constraints relatively to the equipment capacities. In this paper, the effects of thermal and electric load fluctuation to the cogeneration plant design were considered. An approach for modelling these load variability is proposed for comparing two competing thermal and electric parity competing schemes. A gas turbine associated to a heat recovery steam generator was then proposed and analysed for thermal- and electric-following operational strategies. Thermal-following option revealed to be more attractive for the technical and economic limits defined for this analysis. (c) 2006 Elsevier Ltd. All rights reserved.
Thermal-biological aspects on the seed germination of Cucumis anguria L.: influence of the seed coat
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The influence of sample preparation strategy of vegetables on the electrothermal behaviour of Se without and with chemical modifiers such as Pd(NO3)(2), Pd(NO3)(2) + Mg(NO3)(2), Pd(NO3)(2) + Cd(NO3)(2), pre-reduced Pd, Mg(NO3)(2), and Ni(NO3)(2) was investigated. Acid digestates and slurries of vegetables (0.1% m/v in 1% m/v HNO3 + 0.005% v/v of Triton X-100) were used to prepare reference solutions or slurries. For 10 mul of each modifier tested, pyrolysis and atomization temperatures were evaluated using pyrolysis and atomization curves, respectively. Best conditions, such as thermal stability, signal profile, repeatability and sensitivity were attained using Pd(NO3)(2) as chemical modifier. The following heating program (temperature, ramp/hold time) of the graphite tube of the Varian SpectrAA-800Z atomic absorption spectrometer was used: dry step (85 degreesC, 5/0 s; 95 degreesC, 40/0 s; 120 degreesC, 10/.5 s); pyrolysis step (1400 degreesC, 10/3s); atomization step (2200 degreesC, 1/2 s); clean step (2600 degreesC, 2/0 s). This pyrolysis temperature is 800 degreesC higher than when measuring without any modifier. For 20 muL sample volume and 10 mug Pd(NO3)(2), analytical curves in the 3.0-30 mug Se 1(-1) range were obtained. The method was applied for Se determination in acid digestates and slurries of 10 vegetable samples and one standard reference material (rice flower) and results were in agreement at 95% confidence level. Recoveries varied from 89 to 95% for spiked samples. The lifetime of the graphite tube was ca. 250 firings and the relative standard deviations (n = 12) for a typical acid digestate and slurry containing 20 mug Se 1(-1) were 3.8% and 8.3%, respectively. The limits of detection were 2.0 mug Se 1(-1) and 0.6 mug Se 1(-1) Se for digestates and slurries, respectively. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
This investigation was carried out within the Parana sedimentary basin, Brazil, involved the sampling of groundwater and air, and was realized with the purpose of evaluating the radioactivity, due to radon gas, in a thermal spa utilizing the waters from Guarani (Botucatu-Piramboia) aquifer. The results reported here provide additional information relative to that of previous studies focusing on the presence of radionuclides in the aquifer, which have mainly characterized those belonging to uranium and thorium series decay, such as the uranium isotopes (U-238 and U-234), radium isotopes (Ra-226 and Ra-228), radon daughters (Bi-214 and Pb-214) and radon (Rn-222) itself the results obtained were compared with the maximum permissible concentration limits in air and drinking water defined by international standards, such as the guidelines for drinking water quality established by the World Health Organization. The possible processes responsible for the presence of radon in the aquifer were also considered in order to evaluate the data obtained.
Resumo:
We investigate the analytic properties of finite-temperature self-energies of bosons interacting with fermions at one-loop order. A simple boson-fermion model was chosen due to its interesting features of having two distinct couplings of bosons with fermions. This leads to a quite different analytic behavior of the bosons self-energies as the external momentum K-mu=(k(0),k) approaches zero in the two possible limits. It is shown that the plasmon and Debye masses are consistently obtained at the pole of the corrected propagator even when the self-energy is analytic at the origin in the frequency-momentum space.
Resumo:
This paper presents the results of a numerical and experimental study of phase change material (PCM) filled walls and roofs under real operational conditions to achieve passive thermal comfort. The numerical part of the study was based on a one-dimensional model for the phase change problem controlled by pure conduction. Real radiation data was used to determine the external face temperature. The numerical treatment was based upon using finite difference approximations and the ADI scheme. The results obtained were compared with field measurements. The experimental set-up consisted of a small room with movable roof and side wall. The roof was constructed in the traditional way but with the phase change material enclosed. Thermocouples were distributed across the cross section of the roof. Another roof, identical but without the PCM, was also used during comparative tests. The movable wall was also constructed as is done traditionally but with the PCM enclosed. Again, thermocouples were distributed across the wall thickness to enable measurement of the local temperatures. Another wall, identical but without the PCM, was also used during comparative tests. The PCM used in the numerical and experimental tests was composed of a mixture of two commercial grades of glycol in order to obtain the required fusion temperature range. Comparison between the simulation results and the experiments indicated good agreement. Field tests also indicated that the PCM used was adequate and that the concept was effective in maintaining the indoor temperature very close to the established comfort limits. Further economical analysis indicated that the concept could effectively help in reducing the electric energy consumption and improving the energy demand pattern. © 1997 by John Wiley & Sons, Ltd.
Resumo:
This study measured the critical temperature reaching time and also the variation of temperature in the surface of the cervical region and within the pulp chamber of human teeth submitted to dental bleaching using 35% hydrogen peroxide gel activated by three different light sources. The samples were randomly divided into 3 groups (n = 15), according to the catalyst light source: Halogen Light (HL), High Intensity Diode Laser (DL), and Light Emmited Diode (LED). The results of temperature variation were submitted to the analysis of variance and Tukey test with p < 0.05. The temperature increase (mean value and standard deviation) inside the pulp chamber for the HL group was 6.8 ± 2.8°C; for the DL group was 15.3 ± 8.8°C; and for the LED group was 1.9 ± 1.0°C for. The temperature variation (mean value and standard deviation) on the tooth surface, for the group irradiated with HL was 9.1 ± 2.2°C; for the group irradiated with DL were 25.7 ± 18.9°C; and for the group irradiated with LED were 2.6 ± 1.4°C. The mean temperature increase values were significantly higher for the group irradiated with DL when compared with groups irradiated with HL and LED (p < 0.05). When applying the inferior limits of the interval of confidence of 95%, an application time of 38.7 s was found for HL group, and 4.4 s for DL group. The LED group did not achieve the critical temperatures for pulp or the periodontal, even when irradiated for 360 s. The HL and DL light sources may be used for dental bleaching for a short period of time. The LED source did not heat the target tissues significantly within the parameters used in this study. © 2010 Pleiades Publishing, Ltd.
Resumo:
The purpose of this study was to investigate the effect of thermal cycling and disinfection on the microhardness of acrylic resins denture base. Four different brands of acrylic resins were evaluated: Onda Cryl, QC 20, Classico and Lucitone. Each brand of acrylic resin was divided into four groups (n = 7) according to the disinfection method (microwave, Efferdent, 4% chlorhexidine and 1% hypochlorite). Samples were disinfected during 60 days. Before and after disinfection, samples were thermal cycled between 5-55 °C with 30-s dwell times for 1000 cycles. The microhardness was measured using a microhardener, at baseline (B), after first thermal cycling (T1), after disinfection (D) and after second thermal cycling (T2). The microhardness values of all groups reduced over time. QC-20 acrylic resin exhibited the lowest microhardness values. At B and T1 periods, the acrylic resins exhibited statistically greater microhardness values when compared to D and T2 periods. It can be concluded that the microhardness values of the acrylic resins denture base were affected by the thermal cycling and disinfection procedures. However, all microhardness values obtained herein are within acceptable clinical limits for the acrylic resins. © 2013 Informa UK Ltd.
Resumo:
In this work we study two different spin-boson models. Such models are generalizations of the Dicke model, it means they describe systems of N identical two-level atoms coupled to a single-mode quantized bosonic field, assuming the rotating wave approximation. In the first model, we consider the wavelength of the bosonic field to be of the order of the linear dimension of the material composed of the atoms, therefore we consider the spatial sinusoidal form of the bosonic field. The second model is the Thompson model, where we consider the presence of phonons in the material composed of the atoms. We study finite temperature properties of the models using the path integral approach and functional methods. In the thermodynamic limit, N→∞, the systems exhibit phase transitions from normal to superradiant phase at some critical values of temperature and coupling constant. We find the asymptotic behavior of the partition functions and the collective spectrums of the systems in the normal and the superradiant phases. We observe that the collective spectrums have zero energy values in the superradiant phases, corresponding to the Goldstone mode associated to the continuous symmetry breaking of the models. Our analysis and results are valid in the limit of zero temperature β→∞, where the models exhibit quantum phase transitions. © 2013 Elsevier B.V. All rights reserved.
Resumo:
The increasing demand for electrical energy and the difficulties involved in installing new transmission lines presents a global challenge. Transmission line cables need to conduct more current, which creates the problem of excessive cable sag and limits the distance between towers. Therefore, it is necessary to develop new cables that have low thermal expansion coefficients, low densities, and high resistance to mechanical stress and corrosion. Continuous fiber-reinforced polymers are now widely used in many industries, including electrical utilities, and provide properties that are superior to those of traditional ACSR (aluminum conductor steel reinforced) cables. Although composite core cables show good performance in terms of corrosion, the contact of carbon fibers with aluminum promotes galvanic corrosion, which compromises mechanical performance. In this work, three different fiber coatings were tested (phenol formaldehyde resin, epoxy-based resin, and epoxy resin with polyester braiding), with measurements of the galvanic current. The use of epoxy resin combined with polyester braiding provided the best inhibition of galvanic corrosion. Investigation of thermal stability revealed that use of phenol formaldehyde resin resulted in a higher glass transition temperature. On the other hand, a post-cure process applied to epoxy-based resin enabled it to achieve glass transition temperatures of up to 200 degrees C. (C) 2014 Elsevier Ltd. All rights reserved.