15 resultados para Thermal fatigue

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

40.00% 40.00%

Publicador:

Resumo:

One of the most interesting alternatives for replacement of hard chrome plating is tungsten carbide thermal spray coating applied by the high velocity oxy-fuel (HVOF) process which presents a safer, cleaner and less expensive alternative to chromium plating. The objective of this research is to compare the influence of the tungsten carbide-17cobalt (WC- 17Co) coating applied by high velocity oxy fuel (HVOF) process with that of hard-chromium electroplating on the fatigue strength and abrasive wear of AISI 4340 steel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is known that chromium electroplating is related to the reduction in the fatigue strength of base metal. However, chromium results in protection against wear and corrosion combined with chemical resistance and good lubricity. Environmental requirements are an important point to be considered in the search for possible alternatives to hard chrome plating. Aircraft landing gear manufactures are considering WC thermal spray coating applied by the high-velocity oxygen-fuel (HVOF) process an alternative candidate, which shows performance at least comparable to results, obtained for hard chrome plating. The aim of this study is to compare the influence of WC-17Co and WC-10Co-4Cr coatings applied by HVOF process and hard chromium electroplating on the fatigue strength of AISI 4340 steel, with and without shot peening. S-N curves were obtained in axial fatigue test for base material, chromium plated and tungsten carbide coated specimens. Tungsten carbide thermal spray coating results in higher fatigue strength when compared to hard chromium electroplated. Shot peening prior to thermal spraying showed to be an excellent alternative to increase fatigue strength of AISI 4340 steel. Experimental data showed higher axial fatigue and corrosion resistance in salt fog exposure for samples WC-10Co-4Cr HVOF coated when compared with WC-17Co. Fracture surface analysis by scanning electron microscopy (SEM) indicated the existence of a uniform coverage of nearly all substrates. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Shot peening is a surface process widely used to improve the fatigue strength of materials, through compressive residual stresses induced in their surface layers. Considering mechanical components for high responsible applications, wear and corrosion control is currently accomplished by the use of coated materials.In the case of chrome plating or hard anodizing, lower fatigue strength in comparison to uncoated parts are associated to high residual tensile stresses and microcracks density. Under constant or variable amplitude loading microcracks will propagate and cross the interface coating substrate without impediment.The aim of the present study is to analyze the influence of WC-10Ni coating applied by HVOF process on the axial fatigue strength of AISI 4340 steel. The shot peening effect on the fatigue performance of coated AISI 4340 steel was also evaluated. The fractured fatigue specimens were investigated using a scanning electron microscope in order to obtain information about the crack initiation points. (C) 2010 Published by Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fatigue failure is a result of a crack initiation and propagation, in consequence of a cyclical load. In aeronautical components as landing gear the fatigue strength is an important parameter to be considered in project, as well as the corrosion and wear resistance.The thermal sprayed HVOF technology it's normally used to protect components against wear and corrosion, and are being considerate an alternative to replace chromium by the aeronautical industry. With respect to fatigue life, the HVOF technique induces residual stress on the interface. In the case of tensile residual stresses, the initiation and propagation phases of fatigue process are accelerated; on the other hand, compressive residual stresses close to the surface may increase fatigue life. The technique to improve the coated materials fatigue strength is the shot peening process, which induces residual stress in the surface in order to delay the nucleation and propagation process.The aim of present study is to compare the influence of WC-10 Ni coating applied by HVOF on the fatigue strength of AISI 4340 steel, with and without shot peening. S-N curves were obtained in axial fatigue tests for material base, and tungsten carbide coated specimens. (C) 2010 Published by Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Currently, high-strength materials, particularly AISI 4340 steel, are used in several landing gear components. Due to the high resistance to wear and corrosion required, the components are usually coating by hard chromium. This treatment produces waste, such as Cr+ 6 (hexavalent chromium), generally after applying the coating of hard chromium which is harmful to health and the environment. The process HVOF (High-velocity-oxygen-fuel) is considered a promising technique for deposition of hard chromium alternative coatings, for example, coatings based on tungsten carbide. This technique provides high hardness and good wear strength and more resistance to fatigue when compared to AISI 4340 hard chromium coated. To minimize loss fatigue due to the process of deposition, shot peening is used to obtain a compressive residual stress. The aim of this study was to analyze the effects of the tungsten carbide thermal spray coating applied by the HVOF, in comparison to the conventional hard chromium electroplating on the AISI 4340 high strength steel behavior in fatigue. Optical microscopy and scanning electron microscopy were used to observe crack origin sites, thickness and adhesion of the coating. (C) 2010 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deposition of wear-resistant hard chromium plating leads to a decrease in the fatigue strength of the base material. Despite the effective protection against wear and corrosion, fatigue life and environmental requirements result in pressure to identify alternatives or to improve conventional chromium electroplating mechanical characteristics. An interesting, environmentally safer and cleaner alternative for the replacement of hard chronic plating is tungsten carbide thermal spray coating, applied by high velocity oxyfuel (HVOF) process.To improve the fatigue strength of aeronautical steel chromium electroplated, shot peening is a successfully used method. Multiple lacer systems of coatings are considered to have larger resistance to crack propagation in comparison with simple layer.The aim of this study was to analyze the effect of nickel underplate on the fatigue strength of hard chromium plated AISI 4340 steel in two mechanical conditions: HRc 39 and HRc 52.Rotating bending fatigue tests results indicate that the clectroless nickel plating underlayer is responsible for the increase in fatigue strength of AISI 4340 steel chromium electroplated. This behavior may be attributed to the largest toughness/ductility and compressive residual stresses which, probably, arrested or delayed the inicrocrack propagation from the hard chromium external layer. The compressive residual stress field (CRSF) induced by the electroplating process was determined by X-ray diffraction method. The evolution of fatigue strength compressive residual stress field CRSF and crack sources are discussed and analyzed by SEM. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Internal residual stresses significantly influence the fatigue strength of coated materials. It is well known that chromium plating is the most used electrodeposited coating for important industrial applications. However, pressure to identify alternatives or to improve the chromium electroplating process have increased in recent years, related to the reduction in fatigue strength of the base material and to environmental requirements. The high efficiency and fluoride free hard chromium electroplating there called accelerated) is an improvement to the conventional process. One environmentally safer and cleaner alternative to hard chromium plating is tungsten carbide thermal spray coating applied by the High Velocity Oxy-Fuel (HVOF) process. To increase the fatigue strength of chromium plated materials, coating thickness and microcracks density are important parameters to be controlled. Techniques as compressive residual stresses induced by shot peening and multilayers, are also used. The aim of this study was to analyse the effects on AISI 4340 steel, in the rotating bending fatigue behaviour, of the: tungsten carbide thermal spray coating applied by HP/HVOF process; chemical nickel underplate, and shot peening process applied before coating deposition, in comparison to hard chromium electroplatings. Rotating bending fatigue test results indicate better performance for the conventional hard chromium plating in relation to the accelerated hard chromium electroplating. Tungsten carbide thermal spray coating and accelerated hard chromium plate over nickel resulted in higher fatigue strength when compared to samples conventional or accelerated hard chromium plated. Shot peening showed to be an excellent alternative to increase fatigue strength of AISI 4340 steel hard chromium electroplated. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tendency of the aircraft industry is to enhance customer value by improving performance and reducing environmental impact. In view of availability, aluminum alloys have a historically tendency to faster insertion due to their lower manufacturing and operated production infrastructure. In landing gear components, wear and corrosion control of many components is accomplished by surface treatments of chrome electroplating on steel or anodizing of aluminum. One of the most interesting environmentally safer and cleaner alternatives for the replacement of hard chrome plating or anodizing is tungsten carbide thermal spray coating, applied by the high velocity oxy fuel (HVOF) process. However, it was observed that residual stresses originating from these coatings reduce the fatigue strength of a component.An effective process as shot peening treatment, considered to improve the fatigue strength, pushes the crack sources beneath the surface in most of medium and high cycle cases, due to the compressive residual stress field induced. The objective of this research is to evaluate a tungsten carbide cobalt (WC-Co) coating applied by the high velocity oxy fuel (HVOF) process, used to replace anodizing. Anodic films were grown on 7050-T7451 aluminum alloy by sulfuric acid anodizing, chromic acid anodizing and hard anodizing. The influence on axial fatigue strength of anodic films grown on the aluminum alloy surface is to degrade the stress-life performance of the base material. Three groups of specimens were prepared and tested in axial fatigue to obtain S-N curves: base material, base material coated by HVOF and base material shot peened and coated.Experimental results revealed increase in the fatigue strength of Al 7050-T7451 alloy associated with the WC 17% Co coating. on the other hand, a reduction in fatigue life occurred in the shot peened and coated condition. Scanning electron microscopy technique and optical microscopy were used to observe crack origin sites, thickness and coating/substrate adhesion. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Application of high temperature superconductor Bi2Sr2Ca2Cu3Ox. (Bi-2223) compound embedded in an Ag matrix requires the knowledge of critical current as a function of mechanical properties. Commercial tapes available in different types have been developed in industrial production scale in which a combination of small diameter filaments, long tape lengths and a ductile matrix results in a conductor with low crack formation and good tolerance against strain. The measurement of critical current and the evaluation of n-index from V-I characteristic curves of Bi-2223/Ag composite tapes subjected to an initial bending strain as a function of number of thermal cycles were done for two types of Bi-2223/Ag composite tapes: with and without steel tape reinforcement. The results showed that tapes with reinforcement presented small critical current degradation as a function of the number of thermal cycles whereas tapes without reinforcement exhibited steadily critical current degradation caused by the propagation of cracks. The n-index followed the same critical current behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fatigue is an important problem to be considered if a ferroelectric film is used for non-volatile memory devices. In this phenomena, the remanent polarization and coercive field properties degrades in cycles which increase in hysteresis loops. The reasons have been attributed to different mechanisms such as a large voltage applied on ferroelectric film in every reading process in Ferroelectric Random Access Memory (FeRAM) or memories for digital storage in computer, grain size effects and others. The aim of this work is to investigate the influence of the crystallization kinetics on dielectric and ferroelectric properties of the Pb(Zr0.53Ti0.47)O-3 thin films prepared by an alternative chemical method. Films were crystallized in air on Pt/Ti/SiO2/Si substrates at 700 degrees C for 1 hour, in conventional thermal annealing (CTA), and at 700 degrees C for 1 min and 700 degrees C 5 min, using a rapid thermal annealing (RTA) process. Final films were crack free and presented an average of 750 nm in thickness. Dielectric properties were studied in the frequency range of 100 Hz - 1 MHz. All films showed a dielectric dispersion at low frequency. Ferroelectric properties were measured from hysteresis loops at 10 kHz. The obtained remanent polarization (P-r) and coercive field (E-c) were 3.7 mu C/cm(2) and 71.9 kV/cm respectively for film crystallized by CTA while in films crystallized by RTA these parameters were essentially the same. In the fatigue process, the P, value decreased to 14% from the initial value after 1.3 x 10(9) switching cycles, for film by CTA, while for film crystallized by RTA for 5 min, P, decreased to 47% from initial value after 1.7 x 10(9) switching cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In cases of decorative and functional applications, chromium results in protection against wear and corrosion combined with chemical resistance and good lubricity. However, pressure to identify alternatives or to improve conventional chromium electroplating mechanical characteristics has increased in recent years, related to the reduction in the fatigue strength of the base material and to environmental requirements. The high efficiency and fluoride-free hard chromium electroplating is an improvement to the conventional process, considering chemical and physical final properties. One of the most interesting, environmentally safer and cleaner alternatives for the replacement of hard chrome plating is tungsten carbide thermal spray coating, applied by the high velocity oxy-fuel (HVOF) process. The aim of this study was to analyse the effects of the tungsten carbide thermal spray coating applied by the HP/HVOF process and of the high efficiency and fluoride-free hard chromium electroplating (in the present paper called 'accelerated'), in comparison to the conventional hard chromium electroplating on the AISI 4340 high strength steel behaviour in fatigue, corrosion, and abrasive wear tests. The results showed that the coatings were damaging to the AISI 4340 steel behaviour when submitted to fatigue testing, with the tungsten carbide thermal spray coatings showing the better performance. Experimental data from abrasive wear tests were conclusive, indicating better results from the WC coating. Regarding corrosion by salt spray test, both coatings were completely corroded after 72 h exposure. Scanning electron microscopy technique (SEM) and optical microscopy were used to observe crack origin sites, thickness and adhesion in all the coatings and microcrack density in hard chromium electroplatings, to aid in the results analysis. © 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: The aim of this study was to evaluate the effect of thermal and mechanical cycling alone or in combination, on the flexural strength of ceramic and metallic frameworks cast in gold alloy or titanium. Methods: Metallic frameworks (25 mm × 3 mm × 0.5 mm) (N = 96) cast in gold alloy or commercial pure titanium (Ti cp) were obtained using acrylic templates. They were airborne particle-abraded with 150 μm aluminum oxide at the central area of the frameworks (8 mm × 3 mm). Bonding agent and opaque were applied on the particle-abraded surfaces and the corresponding ceramic for each metal was fired onto them. The thickness of the ceramic layer was standardized by positioning the frameworks in a metallic template (height: 1 mm). The specimens from each ceramic-metal combination (N = 96, n = 12 per group) were randomly assigned into four experimental fatigue conditions, namely water storage at 37 °C for 24 h (control group), thermal cycling (3000 cycles, between 4 and 55 °C, dwell time: 10 s), mechanical cycling (20,000 cycles under 10 N load, immersion in distilled water at 37 °C) and, thermal and mechanical cycling. A flexural strength test was performed in a universal testing machine (crosshead speed: 1.5 mm/min). Data were statistically analyzed using two-way ANOVA and Tukey's test (α = 0.05). Results: The mean flexural strength values for the ceramic-gold alloy combination (55 ± 7.2 MPa) were significantly higher than those of the ceramic-Ti cp combination (32 ± 6.7 MPa) regardless of the fatigue conditions performed (p < 0.05). Mechanical and thermo-mechanical fatigue decreased the flexural strength results significantly for both ceramic-gold alloy (52 ± 6.6 and 53 ± 5.6 MPa, respectively) and ceramic-Ti cp combinations (29 ± 6.8 and 29 ± 6.8 MPa, respectively) compared to the control group (58 ± 7.8 and 39 ± 5.1 MPa, for gold and Ti cp, respectively) (p < 0.05) (Tukey's test). While ceramic-Ti cp combinations failed adhesively at the metal-opaque interface, gold alloy frameworks exhibited a residue of ceramic material on the surface in all experimental groups. Significance: Mechanical and thermo-mechanical fatigue conditions decreased the flexural strength values for both ceramic-gold alloy and ceramic-Ti cp combinations with the results being significantly lower for the latter in all experimental conditions. © 2007 Academy of Dental Materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal transformations on microalloyed steels can produce multiphase microstructures with different amounts of ferrite, martensite, bainite and retained austenite. These different phases, with distinct morphologies, are determinant of the mechanical behavior of the steel and can, for instance, affect the crack path or promote crack shielding, thus resulting in changes on its propagation rate under cyclic loading. The aim of the present work is to evaluate the effects of microstructure on the tensile strength and fatigue crack growth (FCG) behaviour of a 0.08%C-1,5%Mn (wt. pct.) microalloyed steel, recently developed by a Brazilian steel maker under the designation of RD480. This steel is being considered as a promising alternative to replace low carbon steel in wheel components for the automotive industry. Various microstructural conditions were obtained by means of heat treatments followed by water quench, in which the material samples were kept at the temperatures of 800, 950 and 1200 °C. In order to describe the FCG behavior, two models were tested: the conventional Paris equation and a new exponential equation developed for materials showing non-linear FCG behavior. The results allowed correlating the tensile properties and crack growth resistance to the microstructural features. It is also shown that the Region II FCG curves of the dual and multiphase microstructural conditions present crack growth transitions that are better modeled by dividing them in two parts. The fracture surfaces of the fatigued samples were observed via scanning electron microscopy in order to reveal the fracture mechanisms presented by the various material conditions. © 2010 Published by Elsevier Ltd.