11 resultados para Thermal conductivity.

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steady-state concentric cylinder equipment was used to determine the effective thermal conductivity of beans (Phaseolus vulgaris). The measuring cell had no heated end guards and its length to diameter ratio was 10.5. Glass beads were employed to assess the accuracy and repeatability of the experimental system under heat transfer conditions. The results agree well with those reported in the literature so that the system can be considered reliable. Corn was used to verify the system's accuracy under heat and mass transfer conditions. Again the results were satisfactory. Moisture migration was observed and measured during the tests with beans, but this behavior does not compromise thermal conductivity values if both thermal and mass transfer steady-states are correctly interpreted. The effective thermal conductivity increases linearly with increasing grain moisture content. Statistical regression leads to good estimates of the fitted parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The freezing point depression (FPD) of orange juice at different concentrations was measured by using a simple apparatus. Results showed that the initial freezing point decreased approximately 90% with the increase of juice concentration between 46degrees and 66degrees Brix (water content respectively between 52.8 and 32.8% w/w). The thermal conductivity of orange juice as a function of fluid concentration was also investigated by using a coaxial dual-cylinder apparatus. Below the freezing point, the thermal conductivity was strongly affected by both the orange juice concentration and temperature. Simple equations in terms of water content and temperature could be adjusted to experimental data of FPD and thermal conductivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accurate determination of thermophysical properties of milk is very important for design, simulation, optimization, and control of food processing such as evaporation, heat exchanging, spray drying, and so forth. Generally, polynomial methods are used for prediction of these properties based on empirical correlation to experimental data. Artificial neural networks are better Suited for processing noisy and extensive knowledge indexing. This article proposed the application of neural networks for prediction of specific heat, thermal conductivity, and density of milk with temperature ranged from 2.0 to 71.0degreesC, 72.0 to 92.0% of water content (w/w), and 1.350 to 7.822% of fat content (w/w). Artificial neural networks presented a better prediction capability of specific heat, thermal conductivity, and density of milk than polynomial modeling. It showed a reasonable alternative to empirical modeling for thermophysical properties of foods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal properties of plums (Prunus domestica) and prunes were investigated in the moisture content of 14.2-80.4% (wet basis) near room temperature (approximately 28 degrees C). The apparent density of the fruits increased from 1042.9 to 1460.0 kg/m(3), and the bulk density increased from 706.6 to 897.5 kg/m(3) as the plums were dried, following classical empirical models as a function of moisture content. It was found that specific heat, effective thermal diffusivity, and effective thermal conductivity of the prunes increased with the moisture content of the samples, which can be represented by using different empirical models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal conductivity of several commercial ZnO-based varistor systems was determined based on the laser-pulse method, a technique that proved extremely useful and easy to apply. Using this technique, the thermal conductivity was found to be dependent on the microstructural features of the devices, involving the mean grain size and phase composition. Among the phases existing in commercial ZnO-based varistors, ZniSb2O12 and Bi2O3 were found to contribute strongly to the thermal conductivity of the devices. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Density, heat capacity and thermal conductivity of liquid egg products, such as egg white, egg yolk, whole egg and various white and yolk blends, were determined as affected by temperature and water content ranging from 273 to 311 K and 51.8 to 88.2% (mass), respectively. Polynomial models fitted the experimental data very well, showing a linear relationship both for temperature and water content. (c) 2005 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We performed a comparative study of electrical and thermal properties of ZnO- and SnO2-based varistor. The electrical properties of commercial ZnO-based varistor are equivalent to that found in SnO2-based varistor system. In spite of this, the SnO2 showed a thermal conductivity higher than commercial samples of ZnO-based varistor, which allied with its simpler microstructure and lower dopant concentration is a remarkable result that point out to the use of this system to compete commercially with ZnO-based varistor devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The freezing point depression of mango and papaya pulps was measured by using a simple apparatus, consisting of two major sections: a freezing vessel and a data acquisition system. The thermal conductivity of both pulps as a function of frozen water fraction and temperature was also investigated by using a coaxial dual-cylinder apparatus. Thermal conductivity above the initial freezing point was well fitted by polynomial equations. Below the freezing point, the thermal conductivity was strongly affected by both the frozen water fraction and temperature. Simple equations in terms of frozen water fraction and temperature could be fitted to the experimental data of freezing point depression and thermal conductivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this research report, a sintering process of porous ceramic materials based on Al2O3 was employed using a method where a cation precursor solution is embedded in an organic fibrous cotton matrix. For porous green bodies, the precursor solution and cotton were annealed at temperatures in the range of 100-1600°C using scanning electron microscopy (SEM) and thermogravimetric (TG) analysis to obtain a porous body formation and disposal process containing organic fibers and precursor solution. In a structure consisting of open pores and interconnected nanometric grains, despite the low porosity of around 40% (calculated geometrically), nitrogen physisorption determined a specific surface area of 14m2/g, which shows much sintering of porous bodies. Energy dispersive X-ray (EDX) and X-ray diffraction (XRD) analytical methods revealed a predominant amount of α-Al2O3 in the sintered samples. Thermal properties of the sintered Al2O3 fibers were obtained by using the Laser Flash which resulted in the lower thermal conductivity obtained by α-Al2O3 and therefore improved its potential use as an insulating material. © 2012 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stagnant effective thermal conductivities (K0) of sugar cane bagasse (SCB), wheat bran (WB), orange pulp and peel (OPP) and their combination (weight proportion 1:2:2 SCB/OPP/WB) were obtained using the line heat source method. These solid materials were applied to pectinase production via solid-state fermentation. The moisture content ranged from 4 to 80% (w.b.). A conduction mechanism through the porous media was observed, along with conduction through a liquid film and contact thermal resistance between the samples and the probe. K0 was low for intermediate moisture contents and approached the molecular conductivity of water for high moisture contents. © 2013 Copyright Taylor and Francis Group, LLC.