6 resultados para Thermal barrier
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This paper presents the results of a numerical and experimental study of phase change material (PCM) filled walls and roofs under real operational conditions to achieve passive thermal comfort. The numerical part of the study was based on a one-dimensional model for the phase change problem controlled by pure conduction. Real radiation data was used to determine the external face temperature. The numerical treatment was based upon using finite difference approximations and the ADI scheme. The results obtained were compared with field measurements. The experimental set-up consisted of a small room with movable roof and side wall. The roof was constructed in the traditional way but with the phase change material enclosed. Thermocouples were distributed across the cross section of the roof. Another roof, identical but without the PCM, was also used during comparative tests. The movable wall was also constructed as is done traditionally but with the PCM enclosed. Again, thermocouples were distributed across the wall thickness to enable measurement of the local temperatures. Another wall, identical but without the PCM, was also used during comparative tests. The PCM used in the numerical and experimental tests was composed of a mixture of two commercial grades of glycol in order to obtain the required fusion temperature range. Comparison between the simulation results and the experiments indicated good agreement. Field tests also indicated that the PCM used was adequate and that the concept was effective in maintaining the indoor temperature very close to the established comfort limits. Further economical analysis indicated that the concept could effectively help in reducing the electric energy consumption and improving the energy demand pattern. © 1997 by John Wiley & Sons, Ltd.
Resumo:
The Pluriserial Ribeira Magmatic System-590 of the Late Precambrian Ribeira Fold Belt comprises seven groups of high-K rocks of crustal or mantle origin with ages ranging between 620 and 570 Ma. One of these groups is represented by transalkaline suites akin to appinitic lamprophyres. The suites assemble one or more of following lithologies: (+/- quartz) gabbros and monzogabbros, (+/- quartz) diorites and monzodiorites, (+/- quartz) monzonites and syenites in addition to rare granites. All these rocks occur together in the Piracaia pluton, State of São Paulo. The mineralogy of the Piracaia suite comprises variable amounts of plagioclase (An 60-10), alkali-feldspars (orthoclase, microcline, albite), ortho- (Fe-hypersthene) and clinopyroxenes (augite), amphiboles (hornblende and rare late Fe-hastingsite), abundant biotite, quartz, opaques, sphene, allanite and zircon. Several magmatic pulses constructed the pluton. The Piracaia magma bulk trend evolved initially along the silica-undersaturation plane with simultaneous fractionation of accessory, mafic and felsic minerals. These are segregated in feldspar-rich cumulates. In the late stage, the evolutionary trend followed two distinct paths: one along the or-ab thermal barrier with the crystallization of syenites; the second one along the thermal valley in the or-ab-qz subsystem, producing quartz-syenites and granites. The source of the Piracaia magma was a 'vein-plus-wall-rock-system '. Together the pulses reflect increasing and decreasing participation of peridotites and mica pyroxenites, respectively, in the magmatogenic process. The magmatic pulses were stored in magma chambers, several drained by deep faults or fractures, which were successively reactivated and recharged. Each new pulse underwent mixing with earlier residual magma, followed by fractionation. During ascent through the hot and thickened post-collisional crust, the magma pulses underwent minor compositional changes by crustal contamination. The concentration of valuable elements (Cu, Zn, Gd) in the Piracaia pluton occurred during two phases of the magmatic evolution. Cu and Zn were enriched in cumulates and Gd was concentrated in residual quartz-syenitic veins. Due to their homogeneous dark colour and texture, the monzodiorites are exploited both for polished dimension stones and supports for sensitive scientific instruments. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Mechanical, thermal, and barrier properties of methylcellulose/cellulose nanocrystals nanocomposites
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The nonohmic electrical features of (Ca-1/4,Cu-3/4)TiO3 perovskite ceramics, which have very strong gigantic dielectric is believed originate from potential barriers at the grain boundaries. In the present study, we used the admittance and impedance spectroscopy technique to investigate (Ca-1/4,Cu-3/4)TiO3 perovskite ceramics with low nonohmic electrical properties. The study was conducted under two different conditions: on as-sintered ceramics and on ceramics thermally treated in an oxygen-rich atmosphere. The results confirm that thermal treatment in oxygen-rich atmospheres influence the nonohmic properties. Annealing at oxygen-rich atmospheres improve the nonohmic behavior and annealing at oxygen-poor atmospheres decrease the nonohmic properties, a behavior already reported for common metal oxide nonohmic devices and here firstly evidenced for the (Ca-1/4,Cu-3/4)TiO3 perovskite related materials. The results show that oxygen also influences the capacitance values at low frequencies, a behavior that is indicative of the Schottky-type nature of the potential barrier. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Hybrid organic-inorganic ionic conductors, also called ormolytes (organically modified electrolytes), were obtained by dissolution of LiClO 4 in siloxane-poly(propylene glycol) matrixes. The dynamic features of these nanocomposites were studied and correlated to their electrical properties. Solid-state nuclear magnetic resonance (NMR) spectroscopy was used to probe the effects of the temperature and nanocomposite composition on the dynamic behaviors of both the ionic species ( 7Li) and the polymer chains ( 13C). NMR, dc ionic conductivity, and DSC results demonstrate that the Li + mobility is strongly assisted by the segmental motion of the polymer chain above its glass transition temperature. The ac ionic conductivity in such composites is explained by use of the random free energy barrier (RFEB) model, which is agreement with their disordered and heterogenous structures. These solid ormolytes are transparent and flexible, and they exhibit good ionic conductivity at room temperature (up to 10 -4 S/cm). Consequently, they are very promising candidates for use in several applications such as batteries, sensors, and electrochromic and photoelectro-chemical devices.
Resumo:
The structure and the thermodegradation behavior of both poly(methyl methacrylate)-co-poly(3-tri(methoxysilyil)propyl methacrylate) polymer modified with silyl groups and of intercalated poly(methyl methacrylate)-co-poly(3- tri(methoxysilyil)propyl methacrylate)/Cloisite 15A™ nanocomposite have been in situ probed. The structural feature were comparatively studied by Fourier transform infrared spectroscopy (FTIR), 13C and 29Si nuclear magnetic resonance (NMR), and small angle X-ray scattering (SAXS) measurements. The intercalation of polymer in the interlayer galleries was evidenced by the increment of the basal distance from 31 to 45 Å. The variation of this interlayer distance as function of temperature was followed by in situ SAXS. Pristine polymer decomposition pathway depends on the atmosphere, presenting two steps under air and three under N2. The nanocomposites are more stable than polymer, and this thermal improvement is proportional to the clay loading. The experimental results indicate that clay nanoparticles play several different roles in polymer stabilization, among them, diffusion barrier, charring, and suppression of degradation steps by chemical reactions between polymer and clay. Charring is atmosphere dependent, occurring more pronounced under air. © 2012 Society of Plastics Engineers.