34 resultados para Theoretical chemistry

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complex reaction between VO2+ ((1)A(1)/(3)A) and C2H4 (Ag-1(g)/(3)A(1)) to yield VO+ ((1)Delta/(3)Sigma) and CH3CHO ('A'/(3)A) has been studied by means of B3LYP/6-31G* and B3LYP/6-311G(2d,p) calculations. The structures of all reactants, products, intermediates, and transition structures of this reaction have been optimized and characterized at the fundamental singlet and first excited triplet electronic states. Crossing points are localized, and possible spin inversion processes are discussed by means of the intrinsic reaction coordinate approach. Relevant stationary points along the most favorable reaction pathways have been studied at the CCSD/6-311G(2d,p)//B3LYP/6-311G(2d,p) calculation level. The theoretical results allow the development of thermodynamic and kinetic arguments about the reaction pathways of the title process. In the singlet state, the first step is the barrierless obtention of a reactant complex associated with the formation of a V-C bond, while in the triplet state a three-membered ring addition complex with the V bonded to the two C atoms is obtained. Similar behavior is found in the exit channels: the product complexes can be formed from isolated products without barriers. The reactant and product complexes are the most stable stationary points in the singlet and triplet electronic states. From the singlet state reactant complex, two reaction pathways are posssible to reach the triplet state product complex. (i) A mechanism in which a hydrogen transfer process is the first and rate limiting step and the second step is an oxygen transfer between vanadium and carbon atoms with a concomitant change in the spin state. The crossing point between singlet and triplet spin states is not kinetically relevant because it takes place at a later stage occurring in the exit channel. (ii) A mechanism in which the first stage renders a four-membered ring between vanadyl cation and the ethylene fragment and an oxygencarbon bond is formed; on going from this minimum to the second transition structure, associated with a carbon-vanadium bond breaking process, the crossing point between singlet and triplet spin states is reached. The final step is the hydrogen transfer between both carbon atoms to yield the product complex. In this case the spin change opens a lower barrier pathway. The transition structures with larger values of relative energies for both reactive channels of VO2+ ((1)A(1)) + C2H4 (Ag-1) --> VO+ ((3)Sigma) + CH3CHO ((1)A') present similar energies, and the two reaction pathways can be considered as competitive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential energy surfaces at the singlet (s) and the triplet (t) electronic states associated with the gas-phase ion/molecule reactions of NbO3-, NbO5-, and NbO2(OH)(2)(-) with H2O and O-2 have been investigated by means of DFT calculations at the B3LYP level. An analysis of the results points out that the most favorable reactive channel comprises s-NbO3- reacting with H2O to give an ion-molecule complex s-NbO3(H2O)without a barrier. From this minima, an intramolecular hydrogen transfer takes place between the incoming water molecule and an oxygen atom of the NbO3- fragment to render the most stable minimum, s-NbO2(OH)(2)(-). This oxyhydroxide system reacts with O-2 along a barrierless process to obtain the triplet t-NbO4(OH)(2)(-)-A intermediate, and the crossing point, CP1, between s and t electronic states has been characterized. The next step is the hydrogen-transfer process between the oxygen atom of a hydroxyl group and the one adjacent oxygen atom to render a minimum with the two OH groups near each other, t-NbO4(OH)(2)(-)-B. From this point, the last hydrogen migration takes place, to obtain the product complex, t-NbO5(H2O)(-), that can be connected with the singlet separated products, s-NbO5- and H2O. Therefore, a second crossing point, CP2, has been localized. The nature of the chemical bonding of the key minima (NbO3-, NbO2(OH)(2)(-), NbO4(OH)(2)(-)-B, and NbO5-) in both electronic states of the reaction and an interaction with O-2 has been studied by topological analysis of Becke-Edgecombe electron-localization function (ELF) and atoms-in-molecules (AIM) methodology. The niobium-oxygen interactions are characterized as unshared-electron (ionic) interactions and some oxygen-oxygen interactions as protocovalent bonds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A joint use of experimental and theoretical techniques allows us to understand the key role of intermediate- and short-range defects in the structural and electronic properties of ZnO single crystals obtained by means of both conventional hydrothermal and microwave-hydrothermal synthesis methods. X-ray diffraction, Raman spectra, photoluminescence, scanning electronic and transmission electron microscopies were used to characterize the thermal properties, crystalline and optical features of the obtained nano and microwires ZnO structures. In addition, these properties were further investigated by means of two periodic models, crystalline and disordered ZnO wurtzite structure, and first principles calculations based on density functional theory at the B3LYP level. The theoretical results indicate that the key factor controlling the electronic behavior can be associated with a symmetry breaking process, creating localized electronic levels above the valence band.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

omeprazole is a substituted benzimidazole which suppresses gastric-acid secretion by means of H+, K+-ATPase inhibition. It is an optically active drug with the sulfur of the sulfoxide being the chiral center. This pro-drug can be easily converted into its respective sulfenamide at low pH. In this work, omeprazole has been studied in relation to racemization barrier and decomposition reaction. Quantum chemistry coupled to PCA chemometric method were used to find all minimum energy structures. Conformational analysis and calculation of racemization barriers were carried out by PM3 semiempirical method (Gaussian 98). The average racemization energy barrier for all minimum energy structures (43.56 kcal mol(-1)) can be related to the velocity constant in Eyring's equation. The enormous half-life time at 100 degrees C (9.04 x 10(4) years) indicates that the process cannot be observed in human time scale. on the other hand, the difference of free energy change (Delta(Delta G) = -266.78 kcal mol(-1)) for the decomposition reaction shows that the process is favorable to the sulfenamide formation. The highly negative Delta(Delta G) obtained for the decomposition reaction shows that this process is extremely exothermic. This result explains why omeprazole decomposes and does not racemize. (C) 2008 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ab initio calculations of large cluster models have been performed in order to study water adsorption at the five-fold coordinated adsorption site on pure Mg(001) and MgO(001) surfaces doped with Fe, Ca, and Al. The geometric parameters of the adsorbed water molecule have been optimized preparatory to analysis of binding energies, charge transfer, preferential sites of interaction, and bonding distances. We have used Mulliken population analysis methods in order to analyze charge distributions and the direction of charge transfer. We have also investigated energy gaps, HOMO energies, and SCF orbital energies as well as the acid-base properties of our cluster model. Numerical results are compared, where possible, with experiment and interpreted in the framework of various analytical models. (C) 2001 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A joint experimental and theoretical study has been carried out to rationalize the photoluminescence properties of SrTiO3 perovskite thin films synthesized through a soft chemical processing. Only the amorphous samples present photoluminescence at room temperature. From the theoretical side, first principles quantum mechanical techniques, based on density functional theory at B3LYP level, have been employed to study the electronic structure of a crystalline (ST-c) and an asymmetric (ST-a) model. Electronic properties are analyzed in the light of the experimental results and their relevance in relation to the PL behavior of ST is discussed. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of oxygen to enrich the oxidizer can be an attractive alternate to increase incineration rates of a combustion chamber originally designed to operate with air. For a certain fuel now rate, if some incineration parameters are held constant (as combustion chamber temperature, turbulence level, and residence time), an increase of incineration rates becomes possible with injection of oxygen. This work presents a theoretical evaluation of combustion air enrichment in a combustion chamber designed to incinerate aqueous residues using methane as fuel and air as oxidizer. Detailed chemistry was employed to predict pollutants formation. The overall process was investigated using the PSR routine from the CHEMKIN library. (C) 1999 Elsevier B.V. Ltd.