106 resultados para Textile fibers.
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A pectin lyase, named PLIII, was purified to homogeneity from the culture filtrate of Aspergillus giganteus grown in submerged culture containing orange peel waste as carbon source. PLIII was able to digest apple pectin and citrus pectins with different degrees of methyl esterification. Interestingly, the PLIII activity was stimulated in the presence of some divalent cations including Pb(2+) and was not significantly affected by Hg(2+). Like other pectin lyases, PLIII is stimulated by but is not dependent on Ca(2+). The main soluble product released during the degradation of pectic substances promoted by the PLIII is compatible with an unsaturated monogalacturonate. PLIII is a unique enzyme able to release unsaturated monogalacturonate as the only soluble product during the degradation of pectic substances; therefore, PLIII was classified as an exo-pectin lyase. To our knowledge, this is the first characterization of an exo-pectin lyase. The PLIII described in this work is potentially useful for ethanol production from pectin-rich biomass, besides other common applications for alkaline pectinases like preparation of textile fibers, coffee and tea fermentation, vegetable oil extraction, and the treatment of pulp in papermaking.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper, electrochemical and photo-assisted electrochemical processes are used for color, total organic carbon (TOC) and chemical oxygen demand (COD) degradation of one of the most abundant and strongly colored industrial wastewaters, which results from the dyeing of fibers and fabrics in the textile industry. The experiments were carried out in an 18L pilot-scale tubular low reactor with 70% TiO2/30% RuO2 DSA. A synthetic acid blue 40 solution and real dye house wastewater, containing the same dye, were used for the experiments. By using current density of 80 mA cm(-2) electrochemical process has the capability to remove 80% of color, 46% of TOC and 69% of COD. When used the photochemical process with 4.6 mW cm(-2) of 254nm UV-C radiation to assist the electrolysis, has been obtained 90% of color, 64% of TOC and 60% of COD removal in 90 minutes of processing; furthermore, 70% of initial color was degraded within the first 15 minutes. Experimental runs using dye house wastewater resulted in 78% of color, 26% of TOC and 49% of COD in electrolysis at 80 mA cm(-2) and 90 min; additionally, when photo-assisted, electrolysis resulted in removals of 85% of color, 42% of TOC and 58% of COD. For the operational conditions used in this study, color, TOC and COD showed pseudo-first-order decaying profiles. Apparent rate constants for degradation of TOC and COD were improved by one order of magnitude when the photo-electrochemical process was used.
Resumo:
The indigo dye is extensively used by textile industries and is considered a recalcitrant substance, which causes environmental concern. Chemical products used on textile processing, which affect the environment through effluents, can be voluminous, colored and varied. Vat textile dyes, like indigo, are often used and dye mainly cellulosic fibers of cotton. Decolorization of this dye in liquid medium was tested with ligninolytic basidiomycete fungi from Brazil. Decolorization started in a few hours and after 4 days the removal of dye by Phellinus gilvus culture was in 100%, by Pleurotus sajor-caju 94%, by Pycnoporus sanguineus 91% and by Phanerochaete chrysosporium 75%. No color decrease was observed in a sterile control. Thin layer chromatography of fungi culture extracts revealed only one unknown metabolite of Rf = 0.60, as a result of dye degradation. (C) 2001 Published by Elsevier B.V. B.V.
Resumo:
Turquoise blue 15 (AT15) is a reactive dye widely used in the textile industry to color natural fibers. The presence of these dyes in effluent and industrial wastewater is of considerable interest due ecotoxicological and environmental problems. The electrochemical reduction of this dye has been investigated in aqueous solution using cyclic voltammetry, controlled potential electrolysis and cathodic stripping voltammetry. Optimum conditions for dye discoloration by controlled potential electrolysis use an alkaline medium. Using cathodic stripping voltammetry a linear calibration graph was obtained from 5.00×10-8 mol L-1 to 1.00×10 -6 mol L-1 of AT15 at pH 4.0, using accumulation times of 180 and 240 s and an accumulation potential of 0.0 V. The proposed method was applied in direct determination of the dye in tap water and in textile industry effluent.
Resumo:
The ability to integrate multiple materials into miniaturized fiber structures enables the realization of novel biomedical textile devices with higher-level functionalities and minimally-invasive attributes. In this work, we present novel textile fabrics integrating unobtrusive multi-material fibers that communicate through 2.4 GHz wireless networks with excellent signal quality. The conductor elements of the textiles are embedded within the fibers themselves, providing electrical and chemical shielding against the environment, while preserving the mechanical and cosmetic properties of the garments. These multi-material fibers combine insulating and conducting materials into a well-defined geometry, and represent a cost-effective and minimally-invasive approach to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications.
Resumo:
Brazil is the only country in South America to have an automotive supplier sector based on natural fibers. New opportunities are arising due to an increase demand by the car makers in applying natural fibers in their parts. Several crop fibers have been developed in Brazil. Among them can be listed caroa, piacava, pupunha, mutum and others of regional application. For the automotive industry, which requires large quantities with uniform quality, the alternatives are sisal (170,000 ton/yr), curaua (150 ton/yr in 2003), malva, 200 ton/yr; Brazil is the single largest producer country of sisal, and commercially, the only one in curaua. For South America, the alternatives are fique in Colombia, abaca in equator, flax in Argentina and curaua in Venezuela. It must be understood by the target countries of drugs, is that crop fiber can be an economic alternative to coca in the Andes region, therefore an instrument of land reform and drug reduction plantations. Several companies have a strong program of apply natural fibers based components in their products: Volkswagen do Brazil, DaimlerChrysler, General Motors do Brazil. Among their suppliers can be listed companies such Pematec (curaua), Toro (sisal, coir and jute), Incomer (sisal and jute), Ober (jute, curaua), Indaru (jute and sisal), Antolin (imported kenaf,) Tapetes Sao Carlos (sisal), Poematec (coir) and Art-Gore, with Woodstock'' wood and natural fibers). Figures about production and demand are discussed in the paper.
Resumo:
The aim of this work was to characterize the distribution of myofibers in the gluteus medius muscle of inactive horses of the Brasileiro de Hipismo (BH) breed at different ages by means of histochemical analyses, according to sex and depth of the biopsy. A total of 78 inactive horses (9 castrated males, 35 stallions, and 34 females) of the BH breed, aged 1 to 4 years, were used. A percutaneous muscle biopsy was obtained with a 6.0-mm Bergstrom-type needle, which allowed the removal of muscle fragments at depths of 20 and 60 mm. Myofiber types were determined based on myofibrillar adenosine triphosphatase (mATPase) and nicotinamide dinucleotide tetrazolium reductase (NADH-TR) techniques. Morphometry of the fibers was determined based on cross-sectional area (CSA), mean frequency (F), and relative cross-sectional area (RCSA). The current study demonstrated that BH horses 3 and 4 years of age show a greater percentage of, and area occupied by, type IIA fibers and lower percentage of type IIX fibers in the gluteus medius muscle compared with horses 1 and 2 years of age. No difference was found between sexes in the frequency of and area occupied by the different fiber types at any of the depths and ages studied. In this study, females showed a greater CSA for all fibers in comparison with males, at 1 year of age. The results of the current study indicate that the gluteus medius muscle of inactive BH horses shows modifications in its structural and biochemical composition during the growth of the animals, leading to a better oxidative capacity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Curaua fibers were treated with ionized air to improve the fiber/phenolic matrix adhesion.The treatment with ionized air did not change the thermal stability of the fibers. The impact strength increased with increase in the fiber treatment time. SEM micrographs of the fibers showed that the ionized air treatment led to separation of the fiber bundles. Treatment for 12 h also caused a partial degradation of the fibers, which prompted the matrix to transfer the load to a poorer reinforcing agent during impact, thereby decreasing the impact strength of the related composite. The composites reinforced with fibers treated with ionized air absorbed less water than those reinforced with untreated fibers.
Resumo:
The aim of this work is to study the replacement of currently used thermoplastics by composites reinforced with vegetable fibers with several advantages, mainly better mechanical properties, low weight and competitive cost compared to its counterparts. Extrusion and injection molding processes were studied using polypropylene (PP) matrix. The raw materials used were sugar cane bagasse, elephant grass, wood, milk cartons and recycled polypropylene. The composites were tested for bending, tension, hardness and impact resistance, following ASTM standards. The results obtained were extremely positive since they proved that natural fibers as reinforcement can be an important alternative to replace talc and other fillers.