3 resultados para Tetrapoda
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Amphibians, and especially the anurans (frogs and toads), exhibit a greater diversity of reproductive modes than other tetrapod vertebrates. Twenty-nine reproductive modes have been recognized for the anurans; we propose 10 more, elevating by more than 34% the number of reproductive modes known for anurans worldwide. These newly recognized reproductive modes for the frogs elevate by almost 48% the number of anuran reproductive modes known for the Neotropics. The highly complex topography of the Atlantic forest, breaking up the biome into many small microhabitats, and the high humidity, which reduces desiccation risks, have enabled the evolution of reproductive specializations such as eggs or tadpoles that develop out of water. Nearly 90% of the Atlantic forest has been cleared, and because several anurans are endemic to this region or have specialized reproductive modes dependent on the forest, this partly explains the generalized population declines and large numbers of species that have disappeared in the last few decades. © 2005 American Institute of Biological Sciences.
Resumo:
The sensing of blood gas tensions and/or pH is an evolutionarily conserved, homeostatic mechanism, observable in almost all species studied from invertebrates to man. In vertebrates, a shift from the peripheral O2-oriented sensing in fish, to the central CO2/pH sensing in most tetrapods reflects the specific behavioral requirements of these two groups whereby, in teleost fish, a highly O2-oriented control of breathing matches the ever-changing and low oxygen levels in water, whilst the transition to air-breathing increased the importance of acid-base regulation and O2-related drive, although retained, became relatively less important. The South American lungfish and tetrapods are probably sister groups, a conclusion backed up by many similar features of respiratory control. For example, the relative roles of peripheral and central chemoreceptors are present both in the lungfish and in land vertebrates. In both groups, the central CO2/pH receptors dominate the ventilatory response to hypercarbia (60-80), while the peripheral CO2/pH receptors account for 20-30. Some basic components of respiratory control have changed little during evolution. This review presents studies that reflect the current trends in the field of chemoreceptor function, and several laboratories are involved. An exhaustive review on the previous literature, however, is beyond the intended scope of the article. Rather, we present examples of current trends in respiratory function in vertebrates, ranging from fish to humans, and focus on both O2 sensing and CO2 sensing. As well, we consider the impact of chronic levels of hypoxia - a physiological condition in fish and in land vertebrates resident at high elevations or suffering from one of the many cardiorespiratory disease states that predispose an animal to impaired ventilation or cardiac output. This provides a basis for a comparative physiology that is informative about the evolution of respiratory functions in vertebrates and about human disease. Currently, most detail is known for mammals, for which molecular biology and respiratory physiology have combined in the discovery of the mechanisms underlying the responses of respiratory chemoreceptors. Our review includes new data on nonmammalian vertebrates, which stresses that some chemoreceptor sites are of ancient origin.
Resumo:
The Foxl2 (forkhead box L2) gene is an important member of the forkhead domain family, primarily responsible for the development of ovaries during female sex differentiation. The evolutionary studies conducted previously considered the presence of paralog Foxl2 copies only in teleosts. However, to search for possible paralog copies in other groups of vertebrates and ensure that all predicted copies were homolog to the Foxl2 gene, a broad evolutionary analysis was performed, based on the forkhead domain family. A total of 2464 sequences for the forkhead domain were recovered, and subsequently, 64 representative sequences for Foxl2 were used in the evolutionary analysis of this gene. The most important contribution of this study was the discovery of a new subgroup of Foxl2 copies (ortholog to Foxl2B) present in the chondrichthyan Callorhinchus milii, in the coelacanth Latimeria chalumnae, in the avian Taeniopygia guttata and in the marsupial Monodelphis domestica. This new scenario indicates a gene duplication event in an ancestor of gnathostomes. Furthermore, based on the analysis of the syntenic regions of both Foxl2 copies, the duplication event was not exclusive to Foxl2. Moreover, the duplicated copy distribution was shown to be complex across vertebrates, especially in tetrapods, and the results strongly support a loss of this copy in eutherian species. Finally, the scenario observed in this study suggests an update for Foxl2 gene nomenclature, extending the actual suggested teleost naming of Foxl2A and Foxl2B to all vertebrate sequences and contributing to the establishment of a new evolutionary context for the Foxl2 gene. © 2013 Macmillan Publishers Limited All rights reserved.