37 resultados para Test structure
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents an approach for structural health monitoring (SHM) by using adaptive filters. The experimental signals from different structural conditions provided by piezoelectric actuators/sensors bonded in the test structure are modeled by a discrete-time recursive least square (RLS) filter. The biggest advantage to use a RLS filter is the clear possibility to perform an online SHM procedure since that the identification is also valid for non-stationary linear systems. An online damage-sensitive index feature is computed based on autoregressive (AR) portion of coefficients normalized by the square root of the sum of the square of them. The proposed method is then utilized in a laboratory test involving an aeronautical panel coupled with piezoelectric sensors/actuators (PZTs) in different positions. A hypothesis test employing the t-test is used to obtain the damage decision. The proposed algorithm was able to identify and localize the damages simulated in the structure. The results have shown the applicability and drawbacks the method and the paper concludes with suggestions to improve it. ©2010 Society for Experimental Mechanics Inc.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Until recently, the study of negative and antagonistic interactions (for example, competition and predation) has dominated our understanding of community structure, maintenance and assembly(1). Nevertheless, a recent theoretical model suggests that positive interactions (for example, mutualisms) may counterbalance competition, facilitating long-term coexistence even among ecologically undifferentiated species(2). Mullerian mimics are mutualists that share the costs of predator education(3) and are therefore ideally suited for the investigation of positive and negative interactions in community dynamics. The sole empirical test of this model in a Mullerian mimetic community supports the prediction that positive interactions outweigh the negative effects of spatial overlap(4) (without quantifying resource acquisition). Understanding the role of trophic niche partitioning in facilitating the evolution and stability of Mullerian mimetic communities is now of critical importance, but has yet to be formally investigated. Here we show that resource partitioning and phylogeny determine community structure and outweigh the positive effects of Mullerian mimicry in a species-rich group of neotropical catfishes. From multiple, independent reproductively isolated allopatric communities displaying convergently evolved colour patterns, 92% consist of species that do not compete for resources. Significant differences in phylogenetically conserved traits (snout morphology and body size) were consistently linked to trait-specific resource acquisition. Thus, we report the first evidence, to our knowledge, that competition for trophic resources and phylogeny are pivotal factors in the stable evolution of Mullerian mimicry rings. More generally, our work demonstrates that competition for resources is likely to have a dominant role in the structuring of communities that are simultaneously subject to the effects of both positive and negative interactions.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)