34 resultados para Tensile strengh
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Objective: The aim of this study was to assess the bond strength of adhesive systems to dentin contaminated by temporary cements with or without eugenol. Method: Flat dentin surfaces were obtained from twenty-four human third molars. With exception of the control group (n=8), the surfaces were covered with Interim Restorative Material (Caulk Dentsplay, Milford, DE, USA) or Cavit (3M ESPE, St. Paul, MN, USA) and kept in an oven at 37°C for seven days. After removing the cements, the adhesive systems Adper Single Bond (3M ESPE, St. Paul, MN, USA) or Clearfil SE Bond (Kuraray Co. Ltd., Osaka, Japan) were applied in accordance with the manufacturers' recommendations, and then the crowns were constructed in of resin composite. The teeth were sectioned into specimens with a cross-sectional bond area of 0.81mm2, which were submitted to microtensile testing in a mechanical test machine at an actuator speed of 0.5mm/min. The data were analyzed by t- and ANOVA tests, complemented by Tukey tests (α=0.05). Results: For Adper Single Bond (3M ESPE, St. Paul, MN, USA), bond strength did not differ statistically (p>0.05) for all the experimental conditions. For Clearfil SE Bond (Kuraray Co. Ltd., Osaka, Japan), only the Interim Restorative Material (Caulk Dentsplay, Milford, DE, USA) Group showed significantly lower bond strength (30.1 ± 13.8 MPa) in comparison with the other groups; control (38.9 ± 13.5 MPa) and Cavit (3M ESPE, St. Paul, MN, USA) (42.1 ± 11.0 MPa), which showed no significant difference between them. Conclusion: It was concluded that the previous covering of dentin with temporary cement containing eugenol had a deleterious effect on the adhesive performance of the self-etching system only.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Artificial muscles are of practical interest, but few types have been commercially exploited. Typical problems include slow response, low strain and force generation, short cycle life, use of electrolytes, and low energy efficiency. We have designed guest-filled, twist-spun carbon nanotube yarns as electrolyte-free muscles that provide fast, high-force, large-stroke torsional and tensile actuation. More than a million torsional and tensile actuation cycles are demonstrated, wherein a muscle spins a rotor at an average 11,500 revolutions/minute or delivers 3% tensile contraction at 1200 cycles/minute. Electrical, chemical, or photonic excitation of hybrid yarns changes guest dimensions and generates torsional rotation and contraction of the yarn host. Demonstrations include torsional motors, contractile muscles, and sensors that capture the energy of the sensing process to mechanically actuate.
Resumo:
A anastomose arterial término-terminal é demorada, requer tempo prolongado de oclusão vascular e esta associada a necrose focal, infiltração leucocitária e, conseqüentemente, à fibrose e calcificação da parede arterial. A cola de fibrina é uma alternativa para a anastomose microvascular e pode evitar estas alterações com menor aderência aos tecidos vizinhos e melhor coaptação das bordas arteriais. OBJETIVO: Comparar o processo cicatricial de anastomoses convencionais com anastomoses feitas com cola de fibrina em artérias maiores. MÉTODOS: em 22 coelhos, ambas carótidas foram seccionadas transversalmente e reconstruídas por meio de anastomose término-terminal com 4 pontos simples de reparo e cola de fibrina de um lado (G1), e com 8 pontos separados do outro lado (G2). Após 3 e 15 dias, os animais foram destinados aleatoriamente para estudo de força tênsil concentração de hidroxiprolina (8 animais) e avaliação histológica das anastomoses (3 animais). As lâminas histológicas foram coradas pelo HE Masson e Picrossirius polarização (PSP). RESULTADOS: Após 3 e 15 dias a força tênsil aumenta em ambos os grupos, de 280,0± 32,6g para 432,2± 131,2g no Grupo 1 e de 221,4± 72,4g para 452,2± 132,0g no Grupo 2; sem diferença estatística entre os grupos em cada período. A concentração de hidroxiprolina expressa como razão hidroxiprolina/proteína, variou de 0,0816± 0,0651 para 0,0622± 0,0184 no Grupo 1 e de 0,0734± 0,0577 para 0,0460± 0,0271 no Grupo 2; sem diferença estatística entre os períodos e grupos. Os estudos histológicos mostraram discreto aumento das reações de inflamação e reparação no Grupo 2. A técnica PSP mostrou predomínio do colágeno tipo I em relação do colágeno tipo II nas anastomoses de ambos os grupos, sem diferença expressiva entre esses grupos. CONCLUSÃO: A anastomose com a cola de fibrina foi menos lesiva para a parede arterial do que a anastomose convencional. Mesmo usando menos pontos, as características de força tênsil e de cicatrização da anastomose com cola de fibrina foram similares em ambos os grupos. Os tempos de realização das anastomoses foram significativamente maiores do que na anastomose convencional.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The limitation of photoactivation of dual-polymerized resin cements along the margins of metal restorations may adversely affect the mechanical properties of these cements, thus impairing the retention of restorations. The aim of this study was to assess the bond strength of cast metal crowns cemented with three dual-polymerized resin cements, using a chemically-activated resin cement and zinc phosphate as controls. Fifty nickel-chromium alloy crowns were cast and randomly assigned to five groups of equal size. Castings were cemented on their corresponding metal dies with one of the tested luting agents: Scotchbond Resin Cement, Enforce and Panavia F (dual-polymerized resin cements), Cement-It (chemically-activated resin cement) and Zinc Phosphate Cement (zinc phosphate cement). Specimens were stored in distilled water at 37 degreesC for 24 h and then loaded in tension until failure. Panavia F and Zinc Phosphate Cement provided the highest and lowest bond strength means, respectively. Scotchbond Resin Cement, Enforce and Cement-It cements exhibited similar intermediate values, but with statistically significant difference compared to the other materials (P < 0.05). Even with the restriction or absence of light activation, all tested dual-polymerized resin cements produced significantly higher bond strength than did the zinc phosphate cement and yielded similar or better results than the chemically activated cement. It should be pointed out that the findings of this study relate to a test scenario which does not mimic clinical circumstances and that further work is required to identify the clinical significance of the reported tensile bond strength differences between the different luting materials.
Resumo:
Statement of the Problem: the ceramic composition and surface microstructure of all-ceramic restorations are important components of an effective bonding substrate. Hydrofluoric acid and sandblasting are well-known procedures for surface treatment; however, surface treatment for high alumina-containing and lithium disilicate ceramics have not been fully investigated.Purpose: This in vitro study evaluated the tensile bond strength of resin cement to two types of ceramic systems with different surface treatments.Methods and Materials: Thirty specimens of each ceramic system were made according to the manufacturer's instructions and embedded in polyester resin. Specimens of In-Ceram Alumina [1] and IPS Empress 2 [E] were distributed to three groups with differing surface treatments (n=10): sandblasting with 50 jam aluminum oxide (APA); sandblasting with 110 pm aluminum oxide modified with silica particles (ROCATEC System-RS); a combination of sandblasting with APA and 10% hydrofluoric acid etching (HA) for two minutes on In-Ceram and for 20 seconds for IPS Empress 2. After the respective surface treatments, all the specimens were silanated, and Rely-X resin cement was injected onto the ceramic surface and light polymerized. The specimens were stored in distilled water at 37 degrees C for 24 hours and thermally cycled 1,100 times (5 degrees C/55 degrees C). The tensile bond strength test was performed in a universal testing machine at a 0.5 mm/minute crosshead speed.Results: the mean bond strength values (AWa) for IPS Empress 2 were 12.01 +/- 5.93 (EAPA), 10.34 +/- 1.77 (ERS) and 14.49 +/- 3.04 (EHA). The mean bond strength values for In-Ceram Alumina were 9.87 +/- 2.40 JAPA) and 20.40 +/- 6.27 (IRS). All In-Ceram specimens treated with 10% hydrofluoric acid failed during thermal cycling.Conclusion: the Rocatec system was the most effective surface treatment for In-Ceram Alumina ceramics; whereas, the combination of aluminum oxide sandblasting and hydrofluoric acid etching for 20 seconds worked more effectively for Empress 2 ceramics.