52 resultados para Temperature Processed Milk
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Minimal extraoral dry storage period and moist storage for the avulsed tooth are identified as key steps for the treatment protocol of tooth replantation. Among the possible moist storage media, bovine milk has stood out because of its capacity of preserving the integrity of the periodontal ligament (PDL) fibers. This condition has attracted the attention to investigate the use of powdered milk, which is one of the presentation forms of bovine milk, as a feasible storage medium in cases of delayed tooth replantation. The aim of this study was to evaluate the healing process after delayed replantation of rat teeth stored in reconstituted powdered milk and long shelf-life (ultra high temperature) whole milk. Forty maxillary right rat incisors were assigned to four groups (n = 10): group I - the teeth were extracted and immediately replanted into theirs sockets; group II - the teeth were stored for 60 min in 200 ml of freshly reconstituted powdered milk; group III - the teeth were stored for 60 min in 200 ml of long shelf-life whole milk; group IV - the teeth were kept dry for the same time. All procedures were performed at room temperature. Next, the root canals of teeth in groups II, III, and IV were instrumented, filled with a calcium hydroxide-based paste, and replanted into their sockets. All animals received systemic antibiotic therapy and were killed by anesthetic overdose 60 days after replantation. The pieces containing the replanted teeth were removed, fixed, decalcified, and paraffin-embedded. Semi-serial 6-mu m-thick sections were obtained and stained with hematoxylin and eosin for histomorphological analysis. There was statistically significant difference (P < 0.05) between groups I and IV regarding the presence of replacement resorption and PDL remnants on root surface. The powdered milk and long shelf-life whole milk presented similar results to each other and may be indicated as storage media for avulsed teeth.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cento e dez amostras de 11 diferentes marcas de leite ultra alta temperatura (UAT), comercializadas em São José do Rio Preto - SP, foram submetidas à contagem de microrganismos heterotróficos mesófilos viáveis e à pesquisa de bactérias do grupo do Bacillus cereus. A população de microrganismos mesófilos variou de <1,0´10² UFC/ml a >1,0´10(6) UFC/ml. Bactérias do grupo do Bacillus cereus foram verificadas em 13 (11,8%) amostras. Os resultados evidenciaram elevada população de microrganismos indicadores mesófilos.
Resumo:
The effect of milk processing on rheological and textural properties of probiotic low-fat yogurt (fermented by two different starter cultures) was studied. Skim milk fortified with skim milk powder was subjected to three treatments: (1) thermal treatment at 85C for 30 min; (2) high hydrostatic pressure (HHP) at 676 MPa for 5 min; and (3) combined treatments of HHP (676 MPa for 5 min) and heat (85C for 30 min). The processed milk was fermented using two different starter cultures containing Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus and Bifidobacterium longum at inoculation rates of 0.1 and 0.2%. Rheological parameters were determined and a texture profile analysis was carried out. Yogurts presented different rheological behaviors according to the treatment used, which could be attributed to structural phenomena. The combined HHP and heat treatment of milks resulted in yogurt gels with higher consistency index values than gels obtained from thermally treated milk. The type of starter culture and inoculation rate, providing different fermentation pathways, also affected the consistency index and textural properties significantly. The combined HHP and heat treatment of milks before fermentation, and an inoculation rate of 0.1% (for both cultures), led to desirable rheological and textural properties in yogurt, which presented a creamy and thick consistency that does not require the addition of stabilizers.
Resumo:
The effect of milk processing on the microstructure of probiotic low-fat yogurt was studied. Skim milk fortified with skim milk powder was subjected to three treatments prior to innoculation: thermal treatment at 85 degrees C for 30 min, high hydrostatic pressure at 676 MPa for 5 min, and combined treatments of high hydrostatic pressure (HHP) and heat. The processed milk was then fermented by using two different starter cultures containing Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, and Bifidobacterium longum. The microstructure of heat-treated milk yogurt had fewer interconnected chains of irregularly shaped casein micelles, forming a network that enclosed the void spaces. on the other hand, microstructure of HHP yogurt had more interconnected clusters of densely aggregated protein of reduced particle size, with an appearance more spherical in shape, exhibiting a smoother more regular surface and presenting more uniform size distribution. The combined HHP and heat milk treatments led to compact yogurt gels with increasingly larger casein micelle clusters interspaced by void spaces, and exhibited a high degree of cross-linking. The rounded micelles tended to fuse and form small irregular aggregates in association with clumps of dense amorphous material, which resulted in improved gel texture and viscosity. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Jersey cows has been used in warm climates because they have better performance in dairy production. Generally milk production is reduced in warm climates due to the consequent reduction in feed intake because of the heat stress. When the heat stress occurs there is an increase in the body temperature, however it is not known if the skin temperature indicates a thermal discomfort or if it influences milk yield. The objective of this research was to verify if there was a correlation between skin temperature and milk yield using two treatments. Treatment (A) where the cows stayed for 30 minutes before the milking period, in a room with a shower and a fan; and treatment (B) where the cows did not had access to any cooling device (control). After milking the skin temperature were recorded in the places: forehead, back, leg and teats. Data were statistically analyzed and, even though in treatment (A) the skin temperature were reduced it was not found correlation between skin temperature and milk yield.
Resumo:
Glycomacropeptide is a glycosilated fraction of bovine kappa-casein that remains soluble when milk is clotted by rennin. Determinations of milk sialic acid content are useful because its concentration reflects the amount of free GMP of milk. In normal milk these amounts are very low, 12 to 16 times lower than in sweet whey. Therefore, its determination may be applied to verify possible frauds with whey addictions, since it works as a fingerprint. With the description of a new spectrophotometric method for determination of free GMP (ANSM) occurred a simplification of procedures, being faster than others (HPLC method), without loss of accuracy. However, due to variations of glycosilation in kappa-casein between animals, during the lactation period, due to mastitis and yet due to proteolysis on milk, it was necessary to know these variations to interpret correctly the analytical results. It was analyzed 1,703 samples of producer's raw milk and 1,189 samples of processed milk (HTST and UHT). The results showed that normal milk from herd (producer's milk) have only small amounts of free GMP, with A470nm = 0.232±0.088 or 3.89±1.25 mg of sialic acid/L. The upper limit of this distribution was A = 0.496; thus every bigger value may represent a problem, being outside of normal distribution.
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objective of this study was to evaluate the associations among milk production, rectal temperature, and pregnancy maintenance in lactating recipient dairy cows. Data were collected during an 11-mo period from 463 Holstein cows (203 primiparous and 260 multiparous) assigned to a fixed-time embryo transfer (ET) protocol. Only cows detected with a visible corpus luteum immediately prior to ET were used. Rectal temperatures were collected from all cows on the same day of ET. Milk production at ET was calculated by averaging individual daily milk production during the 7 d preceding ET. Pregnancy diagnosis was performed by transrectal ultrasonography 21 d after ET. Cows were ranked and assigned to groups according to median milk production (median = 35 kg/d; HPROD = above median; LPROD = below median) and rectal temperature (<= 39.0 degrees C = LTEMP; >39.0 degrees C = HTEMP). A milk production x temperature group interaction was detected (P = 0.04) for pregnancy analysis because HTEMP cows ranked as LPROD were 3.1 time more likely to maintain pregnancy compared with HTEMP cows ranked as HPROD (P = 0.03). Milk production did not affect (P = 0.55) odds of pregnancy maintenance within LTEMP cows, however, and no differences in odds of pregnancy maintenance were detected between HTEMP and LTEMP within milk production groups (P > 0.11). Within HTEMP cows, increased milk production decreased the probability of pregnancy maintenance linearly, whereas within LTEMP cows, increased milk production increased the probability of pregnancy maintenance linearly. Within HPROD, increased rectal temperature decreased the probability of pregnancy maintenance linearly, whereas within LPROD cows, no associations between rectal temperatures and probability of cows to maintain pregnancy were detected. In summary, high-producing dairy cows with rectal temperatures below 39.0 degrees C did not experience reduced pregnancy maintenance to ET compared to cohorts with reduced milk production. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Heat capacity, thermal conductivity, and density of whole milk, skimmed milk, and partially skimmed milk were determined at concentrations varying from (72.0 to 92.0) mass % water content and from (0.1 to 7.8) mass % fat content, at temperatures ranging from (275.15 to 344.15) K. Heat capacity and thermal conductivity varied from (3.4 to 4.1) J(.)g(-) K-1.(-1) and from (0.5 to 0.6) W(.)m(-1) K-1.(-1), respectively. Density varied from (1011.8 to 1049.5) kg(.)m(-3). Polynomial functions were used to model the dependence of the properties upon the studied variables. A linear relationship was obtained for all the properties. In the tested range, water content exhibited a greater influence on the properties, while fat content showed a smaller influence.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Response surface methodology was used to establish a relationship between total solids content, milk base, heat treatment temperature, and sample temperature, and consistency index, flow behaviour index, and apparent viscosity of plain stirred yogurts. Statistical treatments resulted in developments of mathematical models. All samples presented shear thinning fluid behaviour. The increase of the content of total solids (9.3-22.7 %) and milk base heat treatment temperature (81.6-98.4°C) resulted in a significant increase in consistency index and a decrease in flow behaviour index. Increase in the sample temperature (1.6-18.4°C) caused a decrease in consistency index and increase in flow behaviour index. Apparent viscosity was directly related to the content of total solids. Rheological properties of yogurt were highly dependent on the content of total solids in milk.