6 resultados para TRANSPARENT CONDUCTING OXIDES

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial cellulose (BC) membranes produced by gram-negative, acetic acid bacteria (Gluconacetobacter xylinus), were used as flexible substrates for the fabrication of Organic Light Emitting Diodes (OLED). In order to achieve the necessary conductive properties indium tin oxide (ITO) thin films were deposited onto the membrane at room temperature using radio frequency (r.f) magnetron sputtering with an r.f. power of 30 W, at pressure of 8 mPa in Ar atmosphere without any subsequent thermal treatment. Visible light transmittance of about 40% was observed. Resistivity, mobility and carrier concentration of deposited ITO films were 4.90 x 10(-4) Ohm cm, 8.08 cm(2)/V-s and -1.5 x 10(21) cm(-3), respectively, comparable with commercial ITO substrates. In order to demonstrate the feasibility of devices based on BC membranes three OLEDs with different substrates were produced: a reference one with commercial ITO on glass, a second one with a SiO(2) thin film interlayer between the BC membrane and the ITO layer and a third one just with ITO deposited directly on the BC membrane. The observed OLED luminance ratio was: 1; 0.5; 0.25 respectively, with 2400 cd/m(2) as the value for the reference OLED. These preliminary results show clearly that the functionalized biopolymer, biodegradable, biocompatible bacterial cellulose membranes can be successfully used as substrate in flexible organic optoelectronic devices. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of the Sb addition on the microstructural and electrical conductivity of the SnO2 thin film was studied in this work. Experimental results show that the Sb addition allowed to control the grain size and electrical conductivity of the SnO2 thin film, resulting in a nanostructured material. The nanostructured Sb-doped SnO2 thin films present high electrical conductivity, even in the presence of high porosity, supporting the hypothesis that nanostructured material must possess strong electrical conductivity. This work involves important aspects that can be applied to the development of high performance transparent conducting thin film. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new architecture for dye-sensitized solar cells is employed, based on a nanostructured transparent conducting oxide protruding from the substrate, covered with a separate active oxide layer. The objective is to decrease electron-hole recombination. The concept was tested by growing branched indium-tin oxide nanowires on glass using pulsed laser deposition followed by deposition of a sputtered titanium dioxide layer covering the wires. The separation of charge generation and charge transport functions opens many possibilities for dye-sensitized solar cell optimization. (c) 2007 Acta Materialia. Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the discovery of high-temperature superconductivity of cuprate oxides, it has been clear that it is strongly affected by the oxygen content, which is also a crucial factor to determine other physical properties of high T-c superconductors. Non-stoichiometric (interstitial) oxygen strongly influences the physical properties of various superconducting oxides, in particular by creating conducting holes. It is now ascertained that the amount of holes injected depends not only on the content of interstitial oxygen, but also on its ordering. Rearrangement of the oxygen ordering may occur even below room temperature due to the unusual high mobility of these atoms. This way, mechanical spectroscopy is one of the most adequate techniques for the study of the mobility (diffusion) of oxygen atoms. This technique allows the determination of the jump frequency of an atomic species precisely, regardless of the model or the different possible types of jumps. In order to evaluate the mobility and the effect of oxygen content on these oxides, ceramic samples we prepared and submitted to several oxygen removal cycles alternately with mechanical relaxation measurements. As for SBCO, it was assumed that the peak was due to O(1)-O(5) jumps of oxygen atoms at the chain terminals or in chain fragments in the orthorhombic phase. In the case of BSCCO, the results showed complex anelastic relaxation structures, which were attributed to interstitial oxygen atom jumps between two adjacent CuO planes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethanol with added water may be found during the process of assessing its physical and chemical properties. This addition can damage automotive vehicle engines and also may contribute to tax evasion. The present contribution describes a method based on a photothermal transparent transducer to determine the water content in ethanol. A chamber with a window of lithium tantalate coated with a thin layer of indium tin oxide was used, and a 1450-nm laser diode was employed as the excitation source. The results indicated a nearly linear response of the apparatus, as a function of the water content in water/ethanol solutions ranging from 0 to 100 (vol.%). The results for the dependency of the photothermal signal on the laser power and chopping frequency suggested that reliable results can be obtained using laser power and chopping rates above 100 mW and 10 Hz, respectively. The results reported here may be useful in the development of an alternative method that can provide real-time data on the water concentration in ethanol in a rapid, portable and unambiguous way, and that can be easily used in laboratory analyses or in gas stations. © 2013 Elsevier B.V.