7 resultados para TRANSLATIONAL REPRESSOR
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The putative translation factor eIF5A is essential for cell viability and is highly conserved from archebacteria to mammals. Although this protein was originally identified as a translation initiation factor, subsequent experiments did not support a role for eIF5A in general translation. In this work, we demonstrate that eIF-5A interacts with structural components of the 80S ribosome, as well as with the translation elongation factor 2 (eEF2). Moreover, eIF5A is further shown to cofractionate with monosomes in a translation-dependent manner. Finally, eIF5A mutants show altered polysome profiles and are sensitive to translation inhibitors. Our results re-establish a function for eIF5A in translation and suggest a role for this factor in translation elongation instead of translation initiation. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
PURPOSE: To present fundamental anatomical aspects and technical skills necessary to urethra and urinary bladder catheterization in female mice and rats. METHODS: Urethral and bladder catheterization has been widely utilized for carcinogenesis and cancer research and still remains very useful in several applications: from toxicological purposes as well as inflammatory and infectious conditions to functional aspects as bladder dynamics and vesicoureteral reflux, among many others. RESULTS: Animal models are in the center of translational research and those involving rodents are the most important nowadays due to several advantages including human reproducibility, easy handling and low cost. CONCLUSIONS: Although technical and anatomical pearls for rodent urethral and bladder access are presented as tackles to the advancement of lower urinary tract preclinical investigation in a broaden sight, restriction to female animals hampers the male microenvironment, demanding future advances.
Resumo:
Basic research is fundamental for discovering potential diagnostic and therapeutic tools, including drugs, vaccines and new diagnostic techniques. On this basis, diagnosis and treatment methods for many diseases have been developed. Presently, discovering new candidate molecules and testing them in animals are relatively easy tasks that require modest resources and responsibility. However, crossing the animal-to-human barrier is still a great challenge that most researchers tend to avoid. Thus, bridging this current gap between clinical and basic research must be encouraged and elucidated in training programmes for health professionals. This project clearly shows the challenges faced by a group of Brazilian researchers who, after discovering a new fibrin sealant through 20 years of painstaking basic work, insisted on having the product applied clinically. The Brazilian government has recently become aware of this challenge and has accordingly defined the product as strategic to the public health of the country. Thus, in addition to financing research and development laboratories, resources were invested in clinical trials and in the development of a virtual platform termed the Virtual System to Support Clinical Research (SAVPC); this platform imparts speed, reliability and visibility to advances in product development, fostering interactions among sponsors, physicians, students and, ultimately, the research subjects themselves. This pioneering project may become a future model for other public institutions in Brazil, principally in overcoming neglected diseases, which unfortunately continue to afflict this tropical country. © 2013 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
FMN riboswitches are genetic elements that, in many bacteria, control genes responsible for biosynthesis and/or transport of riboflavin (vitamin B2 ). We report that the Escherichia coli ribB FMN riboswitch controls expression of the essential gene ribB coding for the riboflavin biosynthetic enzyme 3,4-dihydroxy-2-butanone-4-phosphate synthase (RibB; EC 4.1.99.12). Our data show that the E. coli ribB FMN riboswitch is unusual because it operates at the transcriptional and also at the translational level. Expression of ribB is negatively affected by FMN and by the FMN analog roseoflavin mononucleotide, which is synthesized enzymatically from roseoflavin and ATP. Consequently, in addition to flavoenzymes, the E. coli ribB FMN riboswitch constitutes a target for the antibiotic roseoflavin produced by Streptomyces davawensis.