46 resultados para TEC
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
One of the main drawbacks of the GPS accuracy for L1 users is the error due to ionosphere. This error depends on the total electron content presents in the ionosphere, as well as of the carrier frequency. Some models have been developed to correct GPS observables of the systematic error due to the ionosphere. The model more known and used is the Klobuchar model, which corrected 50-60% of the ionospheric error approximately. Alternatively, IGS (International GNSS Service) also has developed a model called Global Ionospheric Map (GIM). These maps, in format IONEX, are available in the site of the IGS, and one of the applications of them is to correct the GPS observables of the error due to ionosphere. This work aims at evaluating the quality of GPS point positioning using the IGS ionospheric model in the Brazilian region. Tests carried out had shown an average improvement in the horizontal and vertical determination of 72% and 26%, respectively, when GIM is used in the point positioning.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
When GNSS receivers capable of collecting dual-frequency data are available, it is possible to eliminate the first-order ionospheric effect in the data processing through the ionosphere-free linear combination. However, the second- and third-order ionospheric effects still remain. The first-, second- and third-order ionospheric effects are directly proportional to the total electron content (TEC), although the second- and third-order effects are influenced, respectively, by the geomagnetic field and the maximum electron density. In recent years, the international scientific community has given more attention to these kinds of effects and some works have shown that for high precision GNSS positioning these effects have to be taken into consideration. We present a software tool called RINEX_HO that was developed to correct GPS observables for second- and third-order ionosphere effects. RINEX_HO requires as input a RINEX observation file, then computes the second- and third-order ionospheric effects, and applies the corrections to the original GPS observables, creating a corrected RINEX file. The mathematical models implemented to compute these effects are presented, as well as the transformations involving the earth's magnetic field. The use of TEC from global ionospheric maps and TEC calculated from raw pseudorange measurements or pseudoranges smoothed by phase is also investigated.
Resumo:
After removal of the Selective Availability in 2000, the ionosphere became the dominant error source for Global Navigation Satellite Systems (GNSS), especially for the high-accuracy (cm-mm) demanding applications like the Precise Point Positioning (PPP) and Real Time Kinematic (RTK) positioning.The common practice of eliminating the ionospheric error, e. g. by the ionosphere free (IF) observable, which is a linear combination of observables on two frequencies such as GPS L1 and L2, accounts for about 99% of the total ionospheric effect, known as the first order ionospheric effect (Ion1). The remaining 1% residual range errors (RREs) in the IF observable are due to the higher - second and third, order ionospheric effects, Ion2 and Ion3, respectively. Both terms are related with the electron content along the signal path; moreover Ion2 term is associated with the influence of the geomagnetic field on the ionospheric refractive index and Ion3 with the ray bending effect of the ionosphere, which can cause significant deviation in the ray trajectory (due to strong electron density gradients in the ionosphere) such that the error contribution of Ion3 can exceed that of Ion2 (Kim and Tinin, 2007).The higher order error terms do not cancel out in the (first order) ionospherically corrected observable and as such, when not accounted for, they can degrade the accuracy of GNSS positioning, depending on the level of the solar activity and geomagnetic and ionospheric conditions (Hoque and Jakowski, 2007). Simulation results from early 1990s show that Ion2 and Ion3 would contribute to the ionospheric error budget by less than 1% of the Ion1 term at GPS frequencies (Datta-Barua et al., 2008). Although the IF observable may provide sufficient accuracy for most GNSS applications, Ion2 and Ion3 need to be considered for higher accuracy demanding applications especially at times of higher solar activity.This paper investigates the higher order ionospheric effects (Ion2 and Ion3, however excluding the ray bending effects associated with Ion3) in the European region in the GNSS positioning considering the precise point positioning (PPP) method. For this purpose observations from four European stations were considered. These observations were taken in four time intervals corresponding to various geophysical conditions: the active and quiet periods of the solar cycle, 2001 and 2006, respectively, excluding the effects of disturbances in the geomagnetic field (i.e. geomagnetic storms), as well as the years of 2001 and 2003, this time including the impact of geomagnetic disturbances. The program RINEX_HO (Marques et al., 2011) was used to calculate the magnitudes of Ion2 and Ion3 on the range measurements as well as the total electron content (TEC) observed on each receiver-satellite link. The program also corrects the GPS observation files for Ion2 and Ion3; thereafter it is possible to perform PPP with both the original and corrected GPS observation files to analyze the impact of the higher order ionospheric error terms excluding the ray bending effect which may become significant especially at low elevation angles (Ioannides and Strangeways, 2002) on the estimated station coordinates.
Resumo:
O Sistema de Posicionamento Global (GPS) transmite seus sinais em duas freqüências, o que permite eliminar matematicamente os efeitos de primeira ordem da ionosfera através da combinação linear ionosphere free. Porém, restam os efeitos de segunda e terceira ordem, os quais podem provocar erros da ordem de centímetros nas medidas GPS. Esses efeitos, geralmente, são negligenciados no processamento dos dados GPS. Os efeitos ionosféricos de primeira, segunda e terceira ordem são diretamente proporcionais ao TEC presente na ionosfera, porém, no caso dos efeitos de segunda e terceira ordem, comparecem também o campo magnético da Terra e a máxima densidade de elétrons, respectivamente. Nesse artigo, os efeitos de segunda e terceira ordem da ionosfera são investigados, sendo que foram levados em consideração no processamento de dados GPS na região brasileira para fins de posicionamento. Serão apresentados os modelos matemáticos associados a esses efeitos, as transformações envolvendo o campo magnético da Terra e a utilização do TEC advindo dos Mapas Globais da Ionosfera ou calculados a partir das observações GPS de pseudodistância. O processamento dos dados GPS foi realizado considerando o método relativo estático e cinemático e o posicionamento por ponto preciso (PPP). Os efeitos de segunda e terceira ordem foram analisados considerando períodos de alta e baixa atividade ionosférica. Os resultados mostraram que a não consideração desses efeitos no posicionamento por ponto preciso e no posicionamento relativo para linhas de base longas pode introduzir variações da ordem de poucos milímetros nas coordenadas das estações, além de variações diurnas em altitude da ordem de centímetros.
Resumo:
In the relative positioning, even considering that part of the errors due to ionosphere is canceled with the double-difference observations, strong ionospheric effects can occur in maximum solar activity period. However, in minimum solar activity period, the ionospheric effects decrease significantly and therefore an improvement of the relative positioning performance takes place. In this paper we aim at showing that improvement for the scientific and GPS community users. So, have been experiments by using GPS data of two stations of the Brazilian Network for Continuous Monitoring of GPS, forming a baseline of 430 km. The processing were use accomplished with interval of two hours, and only L1 carrier data have been used. The analysis of the obtained results has been carried out from the discrepancies between the "true" coordinates and corresponding ones obtained in the processing. In maximum solar activity period the discrepancy value reached 25 m. on the other hand, in minimum solar activity period, the discrepancy value reached 5,5 m. It is important to emphasize that the majority of the discrepancy values didn't exceed 0,50 m, and in some cases only reached 0,10 m. This shows the increase of application possibilities of the relative positioning using single-frequency GPS receivers in minimum solar activity period.
Resumo:
One of the main drawbacks of the GPS accuracy for L1 users is the error due to ionosphere. This error depends on the total electron content presents in the ionosphere, as well as of the carrier frequency. Some models have been developed to correct GPS observables of the systematic error due to the ionosphere. The model more known and used is the Klobuchar model, which corrected 50-60% of the ionospheric error approximately. Alternatively, IGS (International GNSS Service) also has developed a model called Global Ionospheric Map (GIM). These maps, in format IONEX, are available in the site of the IGS, and one of the applications of them is to correct the GPS observables of the error due to ionosphere. This work aims at evaluating the quality of GPS point positioning using the IGS ionospheric model in the southerm region of Brazil. Tests carried out had shown an average improvement in the horizontal and vertical determination of 44% and 77%, respectively, when GIM is used in the point positioning.
Resumo:
The ionosphere is a major source of systematic error in the GPS observables. As this error is directly proportional to the TEC (Total Electron Content), the quality of GPS positioning (especially with single frequency receivers) can be significantly affected by regular changes of TEC. The ionosphere factor is even more relevant in the Brazilian region, where ionospheric phenomena, such as the Equatorial Anomaly, intensify these variations. Taking the above mentioned factors into account, experiments were conducted in this research to evaluate the daily and seasonal behavior of the TEC and the point positioning with GPS (single frequency) in periods of high and low solar activity in the Brazilian region. The results showed a direct correlation between the decrease in electrons density in the ionosphere (period of low solar activity) and improvement in positioning accuracy, as well as a large influence of Equatorial Anomaly on the results of point positioning.
Resumo:
In this paper, a factor referred to as k(f) for linear induction motor end effect analysis is presented. The mathematical model takes into account the longitudinal entry end effect. The entry end effect produces considerable distortion in magnetic field distribution. It is shown how this influence is derived from the machine-developed force that is calculated through the application of the I-D theory. The k(f) factor establishes the relationship between the longitudinal end effect and machine parameters, mainly the number of magnetic poles, secondary resistivity, and frequency.
Resumo:
Energy policies and technological progress in the development of wind turbines have made wind power the fastest growing renewable power source worldwide. The inherent variability of this resource requires special attention when analyzing the impacts of high penetration on the distribution network. A time-series steady-state analysis is proposed that assesses technical issues such as energy export, losses, and short-circuit levels. A multiobjective programming approach based on the nondominated sorting genetic algorithm (NSGA) is applied in order to find configurations that maximize the integration of distributed wind power generation (DWPG) while satisfying voltage and thermal limits. The approach has been applied to a medium voltage distribution network considering hourly demand and wind profiles for part of the U.K. The Pareto optimal solutions obtained highlight the drawbacks of using a single demand and generation scenario, and indicate the importance of appropriate substation voltage settings for maximizing the connection of MPG.
Resumo:
The aims of the present study were to relate intramammary infection (IMI) occurrence and somatic cell count (SCC) with teat-end condition (TEC) and udder cleanliness (UC). Milk samples from 1931 teats were evaluated according to the presence of IMI and SCC. Scores were applied to teats according to the TEC and to UC. Teats ends with a very rough ring had the largest number of IMI when compared to the other three categories, as well as animals with dirtier udders. The change in a TEC score increased by around 30% the chance of IMI. Also, the chance of the animal developing IMI increased by approximately 47% when the UC score increased. No significant association between both scores and quarter SCC was found. It can be concluded that animals with very rough teat end rings and very dirty udders have a greater predisposition to IMI. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
OBJETIVO: Desenvolver uma dieta hiperlipídica de baixo custo, tendo farinha de soja como fonte proteica, que seja eficiente na seleção de ratos propensos e resistentes à obesidade e que permita alcançar fenótipo obeso nos animais propensos. Além desses requisitos, a dieta deve ser palatável e não rejeitada a curto prazo pelo animal. MÉTODOS: A dieta proposta foi obtida misturando-se leite condensado (15,5%), amendoim (18,5%), farinha de soja (20,0%), óleo de milho (6,0%), ração Bio Tec (30,0%) e bolacha wafer de chocolate (10,0%). A mistura foi peletizada e submetida à análise bromatológica. A dieta foi ofertada a ratos Wistar durante uma semana; posteriormente, os animais foram divididos em três grupos, de acordo com o ganho de peso. O terço superior foi considerado propenso à obesidade e o terço inferior, resistente à obesidade. Após 80 dias de oferta da dieta, os animais foram sacrificados e foram quantificados o peso corpóreo, consumo alimentar, gorduras retroperitoneal, periepididimal, de carcaça e gorduras totais. RESULTADOS: Verificou-se que a dieta apresentava 5,31kcal/g, com a seguinte composição: 22,3% de gordura, 22,2% de proteína, 15,9% de fibra, estimando-se 35,7% de carboidrato. Ratos propensos à obesidade, alimentados por 87 dias com a dieta hipercalórica, apresentaram peso corpóreo, gorduras retroperitoneal, periepididimal e totais significativamente maiores do que animais resistentes à obesidade (p<0,05). O consumo de alimentos também foi maior em animais propensos (p<0,05). Verificou-se também que a substituição da caseína pela farinha de soja, como componente proteico da ração, levou à diminuição de 96,0% no custo do estudo. CONCLUSÃO: A dieta formulada com farinha de soja apresentou custo reduzido e foi capaz de desenvolver o fenótipo obeso em ratos propensos, à semelhança do observado na literatura com outras dietas.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)