4 resultados para Symmetry Ratio Algorithm

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Traditional Monte Carlo simulations of QCD in the presence of a baryon chemical potential are plagued by the complex phase problem and new numerical approaches are necessary for studying the phase diagram of the theory. In this work we consider a ℤ3 Polyakov loop model for the deconfining phase transition in QCD and discuss how a flux representation of the model in terms of dimer and monomer variable solves the complex action problem. We present results of numerical simulations using a worm algorithm for the specific heat and two-point correlation function of Polyakov loops. Evidences of a first order deconfinement phase transition are discussed. © 2013 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigation of invariant cross-sections for production of K*- and K*0, in the fragmentation region of the proton, in p - p and γ - p reactions, gives a direct and unambiguous probe to the symmetry breaking of the nucleon sea. Based on existing data, we clearly found a large asymmetry of the sea. Our result is in excellent agreement with NA51 measurement, signaling lack of any nuclear effect. The measurement can be carried out in a single experimental set up. The ratio K*-/K*0 is equivalent to ū/d̄, with easy access to the x-dependence of the asymmetry. The observed asymmetry from available experimental data is used to improve the valon-recombination model. © 1997 Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze the average performance of a general class of learning algorithms for the nondeterministic polynomial time complete problem of rule extraction by a binary perceptron. The examples are generated by a rule implemented by a teacher network of similar architecture. A variational approach is used in trying to identify the potential energy that leads to the largest generalization in the thermodynamic limit. We restrict our search to algorithms that always satisfy the binary constraints. A replica symmetric ansatz leads to a learning algorithm which presents a phase transition in violation of an information theoretical bound. Stability analysis shows that this is due to a failure of the replica symmetric ansatz and the first step of replica symmetry breaking (RSB) is studied. The variational method does not determine a unique potential but it allows construction of a class with a unique minimum within each first order valley. Members of this class improve on the performance of Gibbs algorithm but fail to reach the Bayesian limit in the low generalization phase. They even fail to reach the performance of the best binary, an optimal clipping of the barycenter of version space. We find a trade-off between a good low performance and early onset of perfect generalization. Although the RSB may be locally stable we discuss the possibility that it fails to be the correct saddle point globally. ©2000 The American Physical Society.