129 resultados para Swelling polymer
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
[GRAPHICS]This work proposes a combined swelling-electron paramagnetic resonance (EPR) approach aiming at determining some unusual polymer solvation parameters relevant for chemical processes occurring inside beads. Batches of benzhydrylamine-resin (BHAR), a copolymer of styrene-1% divinylbenzene containing phenylmethylamine groups were, labeled with the paramagnetic amino acid 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amine-4-carboxylic acid (TOAC), and their swelling properties and EPR spectra were examined in DCM and DMF. By taking into account the BHARs labeling degrees, the corresponding swelling values, and some polymer structural characteristics, it was possible to calculate polymer swelling parameters, among them, the volume and the number of sites per bead, site-site distances and site concentration. The latter values ranged from 17 to 170 angstrom and from 0.4 to 550 mM, respectively. EPR spectroscopy was applied to validate the multistep calculation strategy of these swelling parameters. Spin-spin interaction was detected in the labeled resins at site-site distances less than approximately 60 A or probe concentrations higher than approximately 1 x 10(-2) M, in close agreement with the values obtained for the spin probe free in solution. Complementarily, the yield of coupling reactions in different resins indicated that the greater the inter-site distance or the lower the site concentration, the faster the reaction. The results suggested that the model and the experimental measurements developed for the determination of solvation parameters represent a relevant step forward for the deeper understanding and improvement of polymer-related processes.
Resumo:
The aim of this study was to prepare multiparticulate systems of pectin:chitosan (PC:CS) and to evaluate their swelling ratio and the drug release in different environments. PC:CS particles containing triamcinolone were prepared by a complex coacervation/ionotropic gelation method in aqueous environment. The polymer ratio, the calcium concentration and the contact time of the capsules with chitosan dispersion for particles formation and the structures obtained were analyzed. The systems were characterized in relation to morphology, size, swelling, and drug release behavior. The methodology used allowed the production of spherical particles with narrow range of size distribution. The entrapment efficiency for triamcinolone was 84.31 ± 439. It was observed that the particles present a relatively low swelling ratio in acidic medium and a larger swelling ratio in enteric medium. The release profile was dependent on pH and can be related with the swelling ratio.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Thermo-sensitive chitosan-cellulose derivative hydrogels: swelling behaviour and morphologic studies
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The electrical characterization of a high efficient multilayer polymer light emitting diode using poly[(2-methoxy-5-hexyloxy)-p-phenylenevinylene] as the emissive layer and an anionic fluorinated surfactant as the electron transport layer was performed. For the sake of comparison, a conventional single layer device was fabricated. The density current vs. voltage measurements revealed that the conventional device has a higher threshold voltage and lower current compared to the surfactant modified device. The effective barrier height for electron injection was suppressed. The influence of the interfaces and bulk contributions to the dc and high frequencies conductivities of the devices was also discussed. (c) 2006 Springer Science + Business Media, Inc.
Effect of ion concentration of ionomer in electron injection layer of polymer light-emitting devices
Resumo:
Polymer light-emitting devices (PLEDs) with poly(2-methoxy-5-hexyloxy)-p-phenylenevinylene (OC1OC6-PPV) as the emissive layer were studied with an electron injection layer of ionomers consisting of copolymers of styrene and methylmethacrylate (PS/PMMA) with 3, 6 and 8 mol% degree of sulfonation. The ionomers were able to form very thin films over the emissive layer, with less than 30 nm. Additionally, the presence of ion pairs of ionomer suppresses the tendency toward dewetting of the thin film of ionomer (similar to 10 nm) which can cause malfunction of the device. The effect of the ionomers was investigated as a function of the ion content. The devices performance, characterized by their current density and luminance intensity versus voltage, showed a remarkable increase with the ionomer layer up to 6 mol% of ionic groups, decreasing after that for the 8 mol% ionomer device. The study of the impedance spectroscopy in the frequency range from 0.1 to 10(6) Hz showed that the injection phenomena dominate over the transport in the electroluminescent polymer bulk. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Polymer light-emitting devices (PLEDs) have been produced with Langmuir-Blodgett (LB) films from poly(2-methoxy-5-hexyloxy)-p-phenylenevinylene (OC1OC6-PPV) as the emissive layer and an ionomer of a copolymer of styrene and methylmethacrylate (PS/PMMA) as an electron-injection layer. The main features of such devices are the low operating voltages, obtainable firstly due to the good quality of the ultrathin LB films that allows PLEDs to be produced reproducibly and secondly due to the improved electrical and luminance properties brought by the electron-injection layer. Also demonstrated is the superior performance of an all-LB device compared to another one produced with cast films of the same materials. Published by Elsevier B.V.
Resumo:
An increase of the reports involving mimetic systems has been observed. Briefly, these systems use biological phospholipids to exploit specific interactions between membrane-models and drugs. Here, the Layer-by-Layer (LbL) and Langmuir techniques were used to investigate the interaction between cardiolipin (CLP-negative phospholipid) and a cationic-like drug methylene blue (MB). Supported by a cationic polyelectrolyte (PAH), LbL films containing PAH/(CLP + MB) and PAH/(CLP + MB + AgNP) were grown up to 14 bilayers. The optical microscopy analysis revealed a decrease of the CLP vesicle sizes in the presence of MB as a possible consequence of the MB action onto the mechanical properties of the CLP membrane. From FTIR spectra, changes mainly related to peak position and band intensity and shape were observed in the spectra from PAH/CLP when in the presence of MB. The latter supports that the interactions between the phosphate and amine charged groups from CLP and PAH, respectively, established during the LbL film fabrication, besides the CLP hydrocarbon environment, are influenced by the presence of MB. Using the micro-Raman technique, a chemical mapping was build based on MB spectrum by resonance Raman scattering (RRS) and surface-enhanced resonance Raman scattering (SERRS). The later phenomenon was activated by Ag nanoparticles (AgNPs) trapped within the LbL film allowing collecting spectra for a single bilayer of PAH/(CLP + MB + AgNP). A rough estimation showed a SERRS amplification of 10(3) in comparison to RRS spectra. As a complementary approach, Langmuir films of CLP in the presence of co-spread MB were investigated through surface pressure vs mean molecular area (pi-A) isotherms. The results showed that for concentrations of MB below 100 mol%, the drug is expelled to water subphase for high values of surface pressure (condensed phase). For concentration at 100% and higher, the MB keeps bound to CLP floating monolayer. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
An amperometric oxygen sensor based on a polymeric nickel-salen (salen = N,N '-ethylenebis(salicydeneiminato)) film coated platinum electrode was developed. The sensor was constructed by electropolymerization of nickel-salen complex at a platinum electrode in acetonitrile/tetrabuthylamonium perchlorate by cyclic voltammetry. The voltammetric behavior of the modified electrode was investigated in 0.5 mol L-1 KCl solution in the absence and presende of molecular oxygen. A significant increased of cathodic peak current (at -0.20 vs. SCE) of the modified electrode with addition of oxygen to the solution was observed. This result shows that the nickel-salen film on the surface of the electrode promotes the reduction of oxygen. The reaction can be brought about electrochemically where in the nickel(II) complex is first reduced to a nickel(I) complex at the electrode surface. The nickel(I) complex then undergoes a catalytic oxidation by the oxygen molecular in solution back to the nickel(II) complex, which can then be electrochemically re-reduced to produce an enhancement of the cathodic current. The plot of the cathodic current versus the dissolved oxygen concentration for chronoamperometry (potential fixed = -0.20 V) at the sensor was linear in the concentration range of 3.95 to 9.20 mg L-1 with concentration limit of 0.17 mg L-1 O-2. The modified electrode proposed is useful for the quality control and routine analysis of dissolved oxygen in commercial water and environmental water samples. The results obtained for the levels of dissolved oxygen are in agreement with the results obtained with an O-2 commercial sensor. (C) 2011 Published by Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Um hidrogel foi desenvolvido a partir de dextrano 70 kDa (DEX-70) e praziquantel incorporado (PZQ) como fármaco modelo. Propriedades biofarmacêuticas, como solubilidade e velocidade de dissolução, foram analisadas no desenvolvimento do hidrogel. Além disso, o hidrogel também foi caracterizado por espectroscopia na região do infravermelho e calorimetria diferencial exploratória (DSC). Testes da taxa de intumescimento mostraram que o hidrogel intumesce lentamente, embora tenha sido mais rápido do que a taxa do polímero livre. Nos testes de dissolução, o hidrogel liberou o fármaco lenta e continuamente. Esta liberação lenta foi semelhante a observada nos testes de intumescimento e resultou em uma liberação controlada do fármaco. Assim, o dextrano 70 kDa é um polímero adequado para o desenvolvimento de hidrogéis como veículos para a liberação controlada de fármacos.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
High amylose cross-linked to different degrees with sodium trimetaphosphate by varying base strength (2% or 4%) and contact time (0.5-4 h) was evaluated as non-compacted systems for sodium diclophenac controlled release. The physical properties and the performance of these products for sodium diclophenac controlled release from non-compacted systems were related to the structures generated at each cross-linking degree. For samples at 2% until 2 h the swelling ability, G' and eta* values increased with the cross-linking degree, because the longer polymer chains became progressively more entangled and linked. This increases water uptake and holding, favoring the swelling and resulting in systems with higher viscosities. Additionally, the increase of cross-linking degree should contribute for a more elastic structure. The shorter chains with more inter-linkages formed at higher cross-linking degrees (2%4h and 4%) make water caption and holding difficult, decreasing the swelling, viscosity and elasticity. For 2% samples, the longer drug release time exhibited for 2%4h sample indicates that the increase of swelling and viscosity contribute for a more sustained drug release, but the mesh size of the polymeric network seems to be determinant for the attachment of drug molecules. For the 4% samples, smaller meshes size should determine less sustained release of drug. (C) 2008 Elsevier B.V. All rights reserved.