7 resultados para Surface anisotropy

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coated purpose of homogeneous distribution as a second phase is introduced in magnetic systems. Yttrium iron garnet (YIG) shows special interest as magnetic dye, microwave absorber, and magnetic fluids when heterocoagulated by other material. Surface and interface magnetic properties are intimately connected with the new properties of the silica on YIG system. Néel first introduced the concept of surface anisotropy, and Chen et al. developed a model that describes the anisotropy effects at the boundary surface particle, which was applied in this work. Spherical YIG particles were prepared by coprecipitation method and coated with silica using the tetraethylorthosilicate (TEOS) hydrolysis process. The silica-YIG boundary was investigated by transmission electron microscopy. Hysteresis loops comparatively show the profile of the naked and silica-covered YIG particles. The surface anisotropies were calculated using the Chen et al. approach. Indeed, in heterocoagulation systems, the surface anisotropy is a result of the interface symmetry breaking, as observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose an alternative formalism to simulate cosmic microwave background (CMB) temperature maps in Lambda CDM universes with nontrivial spatial topologies. This formalism avoids the need to explicitly compute the eigenmodes of the Laplacian operator in the spatial sections. Instead, the covariance matrix of the coefficients of the spherical harmonic decomposition of the temperature anisotropies is expressed in terms of the elements of the covering group of the space. We obtain a decomposition of the correlation matrix that isolates the topological contribution to the CMB temperature anisotropies out of the simply connected contribution. A further decomposition of the topological signature of the correlation matrix for an arbitrary topology allows us to compute it in terms of correlation matrices corresponding to simpler topologies, for which closed quadrature formulas might be derived. We also use this decomposition to show that CMB temperature maps of (not too large) multiply connected universes must show patterns of alignment, and propose a method to look for these patterns, thus opening the door to the development of new methods for detecting the topology of our Universe even when the injectivity radius of space is slightly larger than the radius of the last scattering surface. We illustrate all these features with the simplest examples, those of flat homogeneous manifolds, i.e., tori, with special attention given to the cylinder, i.e., T-1 topology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crytallite and pore-size evolution during isothermal sintering (400 ≤ T ≤ 700°C) of SnO2 xerogels was studied by X-ray line broadening and nitrogen adsorption-desorption isotherms. The experimental results show a strong anisotropy of crystallite growth between [110] and [101] directions. The preferential growth at [101] is followed by an increase in the mean pore size, reduction of the specific surface area and invariance of total pore volume. This behaviour is typical of grain coalescence sintering. The kinetic analysis of experimental results suggests that the crystallite coalescence at [101] is governed by lattice diffusion. The strong anisotropy of the growth causes pore-size distribution broadening, hindering the macroscopic shrinkage of the compact during sintering. © 1996 Chapman & Hall.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this report, hierarchical ZnO nano- and microstructures were directly grown for the first time on a bacterial cellulose substrate and on two additional different papers by hydrothermal synthesis without any surface modification layer. Compactness and smoothness of the substrates are two important parameters that allow the growth of oriented structures. © 2013 The Royal Society of Chemistry.