112 resultados para Stromal remodeling
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Prostatic differentiation during embryogenesis and its further homeostatic state maintenance during adult life depend on androgens. Dihydrotestosterone, which is synthesized from testosterone by 5alpha-reductase (5alpha-r), is the active molecule triggering androgen action within the prostate. In the present work, we examined the effects of 5alpha-reductase inhibition by finasteride in the ventral prostate (VP) of the adult gerbil, employing histochemical and electron microscopy techniques to demonstrate the morphological and organizational changes of the organ. After 10 days of finasteride treatment at a dose of 100 mg/kg/day, the prostatic complex (VP and dorsolateral prostate) absolute weight was reduced to about 18%. The epithelial cells became short and cuboidal, with less secretory blebs and reduced acid phosphatase activity. The luminal sectional area diminished, suggestive of decreased secretory activity. The stromal/epithelial ratio increased, the stroma becoming thicker but less cellular. There was a striking accumulation of collagen fibrils, which was accompanied by an increase in deposits of amorphous granular material adjacent to the basal lamina and in the clefts between smooth muscle cells (SMC). Additionally, the periacinar smooth muscle became loosely packed. Some SMC were atrophic and showed a denser array of the cytoskeleton, whereas other SMC had a highly irregular outline with numerous spine-like projections. The present data indicate that 5alpha-r inhibition causes epithelial and stromal changes by affecting intra-prostatic hormone levels. These alterations are probably the result of an imbalance of the homeostatic interaction between the epithelium and the underlying stroma.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Epithelial cells from involuting rat ventral prostate (VP) express Matrilysin (MMP-7) mRNA. Herein, we investigated by immunohistochemistry the NIMP-7 protein location and its association with tissue changes following castration in the VP. Normal and castrated adult male Wistar rats were sacrificed at different times after surgery. VP was examined by immunocytochemistry and immunoprecipitation. Castration promoted a shrinking of prostate ducts with an extensive stromal remodeling. In the VP from normal rats, MMP-7 immunoreactivity was found in epithelial secretory granules. Three days after castration, immunostaining for MMP-7 was found in both the epithelial secretory granules and in the stroma just below the epithelium, mainly at the distal ductal tips. At seven and 21 days after castration, the immunostaining for MMP-7 was found only in the stromal space. Immunoprecipitation confirmed the specificity of the primary antibody by rescuing a pro-enzyme form (28 kDa) in the prostate extracts. The present results suggest that MMP-7 participates in the epithelial-stromal interface remodeling of the ventral prostate during the involution achieved by castration, probably in the degradation of components of the epithelial basement membrane. (c) 2007 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this study, we characterized the gerbil's ventral prostate histology ultrastructurally and quantitatively throughout three phases of postnatal development (young, adult, and old) in order to comprehend its biological behavior and propensity to developing spontaneous lesions with aging. The gerbil prostate is composed of alveoli and ducts immersed in a stroma composed of smooth muscle, fibroblasts, collagen and elastic fibers and vessels. The prostate tissue components present morphological and quantitative aspects that vary according to age. Young animals have an immature gland with modest secretory activity. Synthetic activity remained stable in adult and old gerbil. However, prostatic morphology was altered in the aging, showing an increased epithelium and stromal fibrosis. The nuclei of the secretory cells increased with aging, whereas nucleoli presented few alterations during postnatal development. The epithelial proliferation and stromal remodeling noted in this study indicate that the gerbil prostate may respond to the androgen declines typical of senescence through epithelial proliferation and stromal remodeling.
Resumo:
The present study describes the short-term alterations in the prostate ventral and dorsal lobe of the adult Mongolian gerbil, in response to two different androgen suppression approaches. Groups (n = 6) of 16-week-old gerbils were maintained intact or subjected, either to the bilateral surgical castration I week previously or to daily subcutaneous injections of Flutamide (10 mg/kg body weight) for 7 days. The main microscopic features of both prostate lobes in these groups were compared using conventional paraffin tissue sections, measurements of acinar epithelial height and stereological data of main gland components (acini, collagen fibers and fibromuscular stroma). Marked alterations were observed in the basement membrane of the ventral lobe after both surgical and chemical castration, such as an increase in thickness and collagen staining. A low degree of epithelial atrophy was detected in the dorsal lobe following both androgen suppression approaches in comparison with that found in the ventral lobe, indicating that this lobe is not so responsive to testosterone ablation induced by castration or Flutamide treatment, at least insofar as secretory activity is concerned. However, the dorsal lobe exhibited marked stromal modification, such as an increase in collagen fibers following castration and an increase in fibromuscular stroma following Flutamide-treatment. Thus, the histological and quantitative data indicates a differential short-term response of the prostate dorsal lobe to surgical castration and Flutamide therapy, suggesting the existence of lobe-specific mechanisms for stromal remodeling. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The gerbil female prostate undergoes morphological and physiological changes resulting from hormonal fluctuations that occur during the reproductive cycle. These repetitive cycles of glandular growth and regression are followed by an extensive reconstruction and remodeling of prostate stroma throughout the reproductive life of the female gerbil. The objective of this study was to evaluate the effect that the hormonal fluctuations of the reproductive cycle have on the stromal remodeling and the expression and activity of matrix metalloproteinases MMP-2 and -9 in the adult female gerbil prostate. For this, serological, ultrastructural, immunohistochemical and biochemical methods were employed. The results showed that the major stromal alteration coincide with the peak of estradiol, which occurs in estrus, and with the peak of progesterone, occurring during diestrus II. MMP-2 and -9 presented a similar pattern of expression and activity during estrous cycle. The estrus was the phase of greater expression and activity of MMP-2 and -9. On the other hand, in DI and DII, the tissue expression and activity of MMP-2 and -9 was very weak. These results are important since they suggest the involvement of estradiol and progesterone in regulating the expression and activity of MMP-2 and -9 in adult gerbil female prostate. © 2011 Elsevier Inc.
Resumo:
Estrogen seems to have an essential role in the fibromuscular growth characteristic of benign prostatic hyperplasia (BPH). This paper describes the effects of chronic estradiol treatment on Guinea pig prostatic stroma at different ages. Tissues from experimental animals were studied by histological and histochemical procedures, morphometric-stereological analysis and transmission electron microscopy (TEM). Marked fibromuscular hypertrophy was observed after estradiol treatment in animals of pre-pubertal and adult ages. Increases in the density and thickness of the collagen and elastic fibers were observed by histochemistry. TEM revealed wide distributions of collagen fibrils and large elastic fibers adjacent to the epithelial basal lamina and between the stromal cells, establishing contacts between them. These results indicate that the Guinea pig prostate simulates the stromal modifications observed in BPH in some aged animals after estrogen treatment at different ages, making it a good model for this disease. (c) 2005 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.
Resumo:
Cancer is a multistep process that begins with the transformation of normal epithelial cells and continues with tumor growth, stromal invasion and metastasis. The remodeling of the peritumoral environment is decisive for the onset of tumor invasiveness. This event is dependent on epithelial–stromal interactions, degradation of extracellular matrix components and reorganization of fibrillar components. Our research group has studied in a new proposed rodent model the participation of cellular and molecular components in the prostate microenvironment that contributes to cancer progression. Our group adopted the gerbil Meriones unguiculatus as an alternative experimental model for prostate cancer study. This model has presented significant responses to hormonal treatments and to development of spontaneous and induced neoplasias. The data obtained indicate reorganization of type I collagen fibers and reticular fibers, synthesis of new components such as tenascin and proteoglycans, degradation of basement membrane components and elastic fibers and increased expression of metalloproteinases. Fibroblasts that border the region, apparently participate in the stromal reaction. The roles of each of these events, as well as some signaling molecules, participants of neoplastic progression and factors that promote genetic reprogramming during epithelial–stromal transition are also discussed.
Resumo:
There is accumulating evidence that physical inactivity, associated with the modern sedentary lifestyle, is a major determinant of hypertension. It represents the most important modifiable risk factor for cardiovascular diseases, which are the leading cause of morbidity and mortality for both men and women. In addition to involving sympathetic overactivity that alters hemodynamic parameters, hypertension is accompanied by several abnormalities in the skeletal muscle circulation including vessel rarefaction and increased arteriole wall-to-lumen ratio, which contribute to increased total peripheral resistance. Low-intensity aerobic training is a promising tool for the prevention, treatment and control of high blood pressure, but its efficacy may differ between men and women and between male and female animals. This review focuses on peripheral training-induced adaptations that contribute to a blood pressure-lowering effect, with special attention to differential responses in male and female spontaneously hypertensive rats (SHR). Heart, diaphragm and skeletal muscle arterioles (but not kidney arterioles) undergo eutrophic outward remodeling in trained male SHR, which contributed to a reduction of peripheral resistance and to a pressure fall. In contrast, trained female SHR showed no change in arteriole wall-to-lumen ratio and no pressure fall. on the other hand, training-induced adaptive changes in capillaries and venules (increased density) were similar in male and female SHR, supporting a similar hyperemic response to exercise.
Resumo:
Objective: the objectives were to analyze the cardiac effects of exposure to tobacco smoke (ETS), for a period of 30 days, alone and in combination with beta-carotene supplementation (BC). Research methods and procedures: Rats were allocated into: Air (control, n = 13); Air + BC (n = 11); ETS (n = 11); and BC + ETS (n = 9). In Air + BC and BC + ETS, 500 mg of BC were added to the diet. After three months of randomization, cardiac structure and function were assessed by echocardiogram. After that, animals were euthanized and morphological data were analyzed post-morten. One-way and two-way ANOVA were used to assess the effects of ETS, BC and the interaction between ETS and BC on the variables. Results: ETS presented smaller cardiac output (0.087 +/- 0.001 vs. 0.105 +/- 0.004 l/min; p = 0.007), higher left ventricular diastolic diameter (19.6 +/- 0.5 vs. 18.0 +/- 0.5 mm/kg; p = 0.024), higher left ventricular (2.02 +/- 0.05 vs. 1.70 +/- 0.03 g/kg; p < 0.001) and atrium (0.24 +/- 0.01 vs. 0.19 +/- 0.01 g/kg; p = 0.003) weight, adjusted to body weight of animals, and higher values of hepatic lipid hydroperoxide (5.32 +/- 0.1 vs. 4.84 +/- 0.1 nmol/g tissue; p = 0.031) than Air. However, considering those variables, there were no differences between Air and BC + ETS (0.099 +/- 0.004 l/min; 19.0 +/- 0.5 mm/kg; 1.83 +/- 0.04 g/kg; 0.19 +/- 0.01 g/kg; 4.88 +/- 0.1 nmol/g tissue, respectively; p > 0.05). Ultrastructural alterations were found in ETS: disorganization or loss of myofilaments, plasmatic membrane infolding, sarcoplasm reticulum dilatation, polymorphic mitochondria with swelling and decreased cristae. In BC + ETS, most fibers showed normal morphological aspects. Conclusion: One-month tobacco-smoke exposure induces functional and morphological cardiac alterations and BC supplementation attenuates this ventricular remodeling process.
Resumo:
Several studies have shown alterations in hearts from animals subjected to food restriction (FR). However, few experiments in hearts evaluating pressure overload have been reported. We examined the effects of chronic FR on myocardial function and morphology in spontaneously hypertensive rats (SHR). Sixty-day-old SHR were fed a control (C) or a restricted diet (daily intake reduced to 50% of amount of food consumed by the control group) for 90 days. Myocardial performance was studied in isolated left ventricular (LV) papillary muscle. Food restriction decreased body weight and LV weight; LV weight/body-weight ratio was lower in the food-restricted group (SHR-C, 2.84 +/- 0.21 mg/g; SHR-FR, 2.56 +/- 0.24 mg/g; P <.05). Food restriction did not change arterial systolic blood pressure. Myocyte surface area was lower in the food-restricted group (P <.01). Food restriction induced myocardial ultrastructural alterations including reduced sarcoplasm content, reduced and disorganized myofilaments, disorganized Z line, dilated sarcoplasmic reticulum, and deep infoldings of plasma membrane. Myocardial hydroxyproline concentration was increased in the restricted rats. Peak developed tension (P <.05) and maximum rate of tension development (P <.01) were decreased in the SHR-FR group. In conclusion, myocardium of SHR subjected to chronic FR presents attenuation of hypertrophy development, ultrastructural changes, increased collagen content, and systolic dysfunction. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVE: To evaluate the roles of oxidative stress and lipid peroxidation in the ventricular remodeling that is induced by tobacco smoke exposure after myocardial infarction.METHODS: After induced myocardial infarction, rats were allocated into two groups: C (control, n=25) and ETS (exposed to tobacco smoke, n=24). After 6 months, survivors were submitted to echocardiogram and biochemical analyses.RESULTS: Rats in the ETS group showed higher diastolic (C = 1.52 +/- 0.4 mm(2), ETS = 1.95 +/- 0.4 mm(2); p=0.032) and systolic (C = 1.03 +/- 0.3, ETS = 1.36 +/- 0.4 mm(2)/g; p=0.049) ventricular areas, adjusted for body weight. The fractional area change was smaller in the ETS group (C = 30.3 +/- 10.1 %, ETS = 19.2 +/- 11.1 %; p=0.024) and E/A ratios were higher in ETS animals (C = 2.3 +/- 2.2, ETS = 5.1 +/- 2.5; p=0.037). ETS was also associated with a higher water percentage in the lung (C = 4.8 (4.3-4.8), ETS = 5.5 (5.3-5.6); p=0.013) as well as higher cardiac levels of reduced glutathione (C = 20.7 +/- 7.6 nmol/mg of protein, ETS = 40.7 +/- 12.7 nmol/mg of protein; p=0.037) and oxidized glutathione (C = 0.3 +/- 0.1 nmol/g of protein, ETS = 0.9 +/- 0.3 nmol/g of protein; p=0.008). No differences were observed in lipid hydroperoxide levels (C = 0.4 +/- 0.2 nmol/mg of tissue, ETS = 0.1 +/- 0.1 nmol/mg of tissue; p=0.08).CONCLUSION: In animals exposed to tobacco smoke, oxidative stress is associated with the intensification of ventricular re-remodeling after myocardial infarction.
Resumo:
Background: We investigated the effects of length of exposure to tobacco smoke on the cardiac remodeling process induced by exposure to cigarette smoke in rats.Material/Methods: Rats were separated into 4 groups: nonsmoking (NS) 2 (n=25; control animals not exposed to tobacco smoke for 2 months), smoking (S)2 (n=22; rats exposed to smoke from 40 cigarettes/d for 2 months), NS6 (n=18; control animals not exposed to tobacco smoke for 6 months), and S6 (n=25; rats exposed to smoke from 40 cigarettes/d for 6 months). All animals underwent echocardiographic, isolated heart, and morphometric studies. Data were analyzed with a 2-way analysis of variance.Results: No interaction among the variables was found; this suggests that length of exposure to tobacco smoke did not influence the effects of exposure to smoke. Values for left ventricular diastolic diameter/body weight and left atrium/body weight were higher (p=0.023 and p=0.001, respectively) in smoking (S2 and S6) than in nonsmoking animals (NS2 and NS6). Left ventricular mass index was higher (p=0.048) in smoking than in nonsmoking animals. In the isovolumetrically beating ventricle, peak systolic pressure was higher (p=0.034) in smoking than in nonsmoking animals. Significantly higher values were found for left ventricular weight (p=0.017) and right ventricular weight (p=0.001) adjusted for body weight in smoking as opposed to nonsmoking animals. Systolic pressure was higher (p=0.001) in smoking (128 +/- 14 mm Hg) than in nonsmoking animals (112 +/- 11 mm Hg).Conclusions: Length of exposure to cigarette smoke did not influence cardiac remodeling caused by exposure to sm oke in rats.