3 resultados para Straining

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Treatment of urinary stress incontinence (USI) by intravaginal electrical stimulation (IES) and pelvic floor physiotherapy represents an alternative to other therapies. The purpose of this work was to evaluate the effectiveness of this treatment inpatients with urinary incontinence. From January 1998 to May 2000, 30 women (mean age 54 years) were studied. All patients had USI and 70% urge incontinence; average follow-up was 7 months. Selection criteria were based on clinical history, objective evaluation of perineal musculature by perineometry, and urodynamics. The treatment protocol consisted of three sessions of IES per week for 14 weeks using INNOVA equipment. Physiotherapy was initiated in the fifth week of IES. A significant decrease in the number of micturitions and urgency was observed after treatment (P<0.01). The pad test showed a reduction in urinary leakage from 13.9 to 5.9 g after treatment (P<0.01). Objective evaluation of perineal muscle strength showed a significant improvement in all patients after treatment (P<0.01). A positive correlation was observed between maximum flow rate (Q(max)) and all three variables: urethral pressure profile at rest and on straining (stop test), and abdominal leak-point pressure (ALPP). A positive correlation was also observed between ALPP and the stop test. Over 100 different surgical and conservative treatments have been tried to manage USI. The majority of these procedures reveal that despite progress already made in this area, there is no ideal treatment. Satisfactory results can be achieved with this method, especially with patients who are reluctant to undergo surgery because of personal or clinical problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grain refinement of low carbon steel via the warm deformation of martensite during torsion testing was investigated. At the beginning of straining, laths with high dislocation density were observed. After large deformations, a ferrite matrix with grain size close to 1μm and dispersed cementite particles were attained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructure evolution and mechanical behavior during large strain of a 0.16%C-Mn steel has been investigated by warm torsion tests. These experiments were carried out at 685°C at equivalent strain rate of 0.1 s . The initial microstructure composed of a martensite matrix with uniformly dispersed fine cementite particles was attained by quenching and tempering. The microstructure evolution during tempering and straining was performed through interrupted tests. As the material was reheated to testing temperature, well-defined cell structure was created and subgrains within lath martensite were observed by TEM; strong recovery took place, decreasing the dislocation density. After 1 hour at the test temperature and without straining, EBSD technique showed the formation of new grains. The flow stress curves measured had a peculiar shape: rapid work hardening to a hump, followed by an extensive flow-softening region. 65% of the boundaries observed in the sample strained to ε = 1.0 were high angle grain boundaries. After straining to ε = 5.0, average ferrite grain size close to 1.5 μm was found, suggesting that dynamic recrystallization took place. Also, two sets of cementite particles were observed: large particles aligned with straining direction and smaller particles more uniformly dispersed. The fragmentation or grain subdivision that occurred during reheating and tempering time was essential for the formation of ultrafine grained microstructure.