114 resultados para Stomatal conductance to water vapour

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In mature and young leaves of sunflower (Helianthus annuus L. cv. Catissol-01) plants grown in the greenhouse, photosynthetic rate, stomatal conductance, and transpiration rate declined during water stress independently of leaf age and recovered after 24-h rehydration. The intercellular CO 2 concentration, chlorophyll (Chl) content, and photochemical activity were not affected by water stress. However, non-photochemical quenching increased in mature stressed leaves. Rehydration recovered the levels of non-photochemical quenching and increased the F v/F m in young leaves. Drought did not alter the total Chl content. However, the accumulation of proline under drought was dependent on leaf age: higher content of proline was found in young leaves. After 24 h of rehydration the content of proline returned to the same contents as in control plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

center dot Background and Aims Drought is a major environmental constraint affecting growth and production of Coffea canephora. Selection of C. canephora clones has been largely empirical as little is known about how clones respond physiologically to drought. Using clones previously shown to differ in drought tolerance, this study aimed to identify the extent of variation of water use and the mechanisms responsible, particularly those associated morphological traits.center dot Methods Clones (14 and 120, drought-tolerant; 46 and 109A, drought-sensitive, based on their abilities to yield under drought) were grown in 120-L pots until they were 12-months old, when an irrigation and a drought treatment were applied; plants were droughted until the pressure potential (Psi(x)) before dawn (pre-dawn) reached -3.0 MPa. Throughout the drought period, Psi(x) and stomatal conductance (g(s)) were measured. At the end of the experiment, carbon isotope ratio and parameters from pressure-volume curves were estimated. Morphological traits were also assessed.center dot Key Results and Conclusions With irrigation, plant hydraulic conductance (K-L), midday Psi(x) and total biomass were all greater in clones 109A and 120 than in the other clones. Root mass to leaf area ratio was larger in clone 109A than in the others, whereas rooting depth was greater in drought-tolerant than in drought-sensitive clones. Predawn Psi(x) of -3.0 MPa was reached fastest by 109A, followed progressively by clones 46, 120 and 14. Decreases in g(s) with declining Psi(x), or increasing evaporative demand, were similar for clones 14, 46, and 120, but lower in 109A. Carbon isotope ratio increased under drought; however, it was lower in 109A than in other clones. For all clones, Psi(x), g(s) and KL recovered rapidly following re-watering. Differences in root depth, KL and stomatal control of water use, but not osmotic or elastic adjustments, largely explained the differences in relative tolerance to drought stress of clones 14 and 120 compared with clones 46 and 109A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to compare the gas exchange, photosynthetic capacity and water potential of sugarcane genotypes cultivated under water deficit conditions imposed during the initial growth phase. Experiments were performed in a greenhouse using two sugarcane genotypes namely: HoCP93-776 (drought susceptible) and TCP02-4587 (drought tolerant). Sixty days after planting, two different water treatments were applied (i.e., with or without water deficit). At 0,30 and 60 days after the treatment, gas exchange variables were evaluated for their relationship with water use, intrinsic instantaneous water use efficiency and instantaneous carboxylation efficiency. The SPAD index, photosynthetic pigments, water potential and relative water content in the leaves were also analyzed. The genotype HoCP93-776 was more sensitive to drought treatment as indicated by the significantly lower values of SPAD index, photosynthetic pigments, water potential (Ψw) and relative water content (RWC) variables. The genotype TCP02-4587 had higher water potential, stomatal control efficiency, water use efficiency (WUE), intrinsic instantaneous water use efficiency (WUEintr), instantaneous carboxylation efficiency and photosynthetic capacity. The highest air vapor pressure deficit during the drought conditions could be due to the stomatal closing in the HoCP93-776, which contributed to its lower photosynthetic capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Net photosynthesis (A) and transpiration rates (E), stomatal conductance (g), water use efficiency (WUE), intrinsic water use efficiency (IWUE) and internal leaf CO2 concentration (C) in response to different vapor pressure deficit (1.2 and 2.5 kPa) were investigated in 'Pera' sweet orange plants affected by citrus variegated chlorosis (CVC), a disease caused by Xylella fastidiosa. All plants were well watered and leaf water potential (Pw) was also measured by the psychrometric technique. Results showed that healthy plants responded to higher vapor pressure deficit (VPD), lowering its net photosynthesis and transpiration rates, and stomatal conductance. However, diseased plants presented no clear response to VPD, showing lower A, E and g for both VPDs studied and very similar values to these variables in healthy plants at the highest VPD. Internal leaf CO2 concentration also decreased for healthy plants when under the highest VPD, and surprisingly, the same pattern of response was found in plants with CVC. These results, the lower Psi(w) and higher WUE values for diseased plants, indicated that this disease may cause stomatal dysfunction and affect the water resistance through xylem vessels, which ultimately may play some role in photosynthetic metabolism. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coffea canephora plants (clone INCAPER-99) were submitted to low N (LN) or high N (HN) applications and two watering regimes (daily irrigation and irrigation every 5 days for a month). Although water potential was not altered significantly by N, HN plants showed higher relative water content than did LN plants under water deficit. Only HN plants exhibited some ability for osmotic adjustment. Plants from both N treatments increased their cell wall rigidity under drought, with a more pronounced augmentation in HN plants. In well-watered plants, carbon assimilation rate increased with increasing N while stomatal conductance did not respond to N supply. Under drought conditions, carbon assimilation decreased by 68-80% compared to well-watered plants, whereas stomatal conductance and transpiration rate declined by 35% irrespective of the N applications. Stable carbon isotope analysis, combined with leaf gas exchange measurements, indicated that regardless of the watering treatments, N increased the long-term water use efficiency through changes in carbon assimilation with little or no effect on stomatal behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forest dynamics will depend upon the physiological performance of individual tree species under more stressful conditions caused by climate change. In order to compare the idiosyncratic responses of Mediterranean tree species (Quercus faginea, Pinus nigra, Juniperus thurifera) coexisting in forests of central Spain, we evaluated the temporal changes in secondary growth (basal area increment; BAI) and intrinsic water-use efficiency (iWUE) during the last four decades, determined how coexisting species are responding to increases in atmospheric CO2 concentrations (Ca) and drought stress, and assessed the relationship among iWUE and growth during climatically contrasting years. All species increased their iWUE (ca. +15 to +21 %) between the 1970s and the 2000s. This increase was positively related to Ca for J. thurifera and to higher Ca and drought for Q. faginea and P. nigra. During climatically favourable years the study species either increased or maintained their growth at rising iWUE, suggesting a higher CO2 uptake. However, during unfavourable climatic years Q. faginea and especially P. nigra showed sharp declines in growth at enhanced iWUE, likely caused by a reduced stomatal conductance to save water under stressful dry conditions. In contrast, J. thurifera showed enhanced growth also during unfavourable years at increased iWUE, denoting a beneficial effect of Ca even under climatically harsh conditions. Our results reveal significant inter-specific differences in growth driven by alternative physiological responses to increasing drought stress. Thus, forest composition in the Mediterranean region might be altered due to contrasting capacities of coexisting tree species to withstand increasingly stressful conditions. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Avaliou-se o efeito do enriquecimento da água de irrigação com CO2 sobre índices fisiológicos de desenvolvimento e troca gasosa de folhas de plantas de pepino do tipo japonês, cultivados em ambiente protegido. Os experimentos realizados em duas épocas do ano foram instalados em delineamento experimental de blocos ao acaso com 4 tratamentos e 5 repetições. Os tratamentos foram constituídos pelos híbridos Hokuho e Tsuyataro, irrigados com água comum ou enriquecida com CO2, em uma concentração de 1 no primeiro e 0,25 no segundo experimento. A produção de massa de material seco e área foliar adotaram tendência exponencial, não sendo possível observar o início da diminuição da taxa de produção de massa do material seco aos 63 dias após transplante (DAT). A taxa de crescimento da comunidade e taxa de crescimento relativa do híbrido Hokuho irrigado com água comum foi diferente do irrigado com água enriquecida com CO2, no entanto, no híbrido Tsuyataro foram semelhantes. A taxa de assimilação líquida atingiu a máxima pendente na fase de crescimento vegetativo e floração, e foi reduzida drasticamente após os 20 DAT no híbrido Hokuho, e após os 35 DAT no híbrido Tsuyataro. A razão de área foliar diminuiu ligeiramente nos dois híbridos com o desenvolvimento do cultivo. No início observaram-se diferenças entre irrigação com água comum e enriquecida com CO2, porém após 20 DAT não se apreciaram mais diferenças. Quanto a troca gasosa, a taxa assimilatória líquida de CO2 e de transpiração, conductância estomática e eficiência no uso da água foram semelhantes entre plantas irrigadas com água comum e enriquecida com CO2 durante o primeiro semestre. Já no segundo semestre, maiores valores foram registrados pelas plantas irrigadas com água enriquecida.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquatic macrophyte community distribution along the eastern shoreline of the Itaipu Reservoir (one of the South America's largest impoundments) is described in relation to limnological and sedimentological factors. The central body of the reservoir is mesotrophic, while the arms (flooded influent river valleys) along the eastern shore may be oligo-mesotrophic to eutrophic, depending on time of year and sub-catchment characteristics. Macrophyte community composition and species cover were surveyed at 30 sites in four arms, in relation to sediment total P and organic matter; underwater light regime; and water total P and Kjeldahl N concentration, alkalinity, conductivity, depth and pH. Seventeen euhydrophyte and six emergent macrophyte species were recorded. Large stands of Egeria najas dominated the euhydrophyte vegetation, together with free-floating weed species (Pistia stratiotes Linn., Salvinia auriculata Aublet and Eichhornia crassipes (Mart.) Solms.). Canonical Correspondence Analysis of the data showed that two sets of variables were important predictors of aquatic macrophyte community structure. Floating macrophyte assemblage was closely related to concentration of nutrients in both water and sediment, while light penetration was the strongest predictor of submerged species occurrence. Although a large number of potential nuisance species were present, dense growths were restricted to shallower areas of the Itaipu Reservoir, causing localised problems. The possibility of increasing interference by these plants with fisheries, recreational use, transport and hydroelectricity generation suggests a need for continued monitoring of weed distribution and abundance, and investigation of appropriate management measures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rodents from and and semi-arid deserts are faced with the problem of water conservation. The physiological responses of small rodents to such conditions have been intensively investigated over broad geographically disjunct areas. Despite the presence of xeric habitats in South America since the late Tertiary, some studies suggest that sigmodontine South-American desert rodents do not display the same diversity of physiological responses at the species level as those observed in other desert-dwelling species of rodents. In this paper, we analyzed the physiological responses to water deprivation, at the interespecific and interindividual level, among eight species of sigmodontine desert-dwelling rodents from different geographical areas within South-American deserts. Using randomization tests, we found no significant phylogenetic signal for resistance to water deprivation or for individual variability in this response. Contrary to our initial predictions, we observed that sigmodontine rodents from arid/semi-arid habitats (Monte Desert) had significantly lower rates of body mass loss per day (higher tolerances to water deprivation) than species from the hyperarid deserts. We showed that sigmodontine rodents from South America showed a remarkable diversity of physiological mechanisms for coping with water shortage resulting from different evolutionary adaptive strategies. This diversity, however, displays a rather unexpected pattern in terms of its geographical distribution. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo do trabalho foi verificar os indicadores de estresse hídrico, bem como seu efeito na cultura do feijão, por meio da condutância estomática. O experimento foi realizado na Área Experimental de Irrigação da Universidade Estadual Paulista - Jaboticabal, no ano agrícola de 2000. Foram estudados quatro tratamentos de irrigação com níveis crescentes de ETm: (T1) ETm acumulada = 22 mm; (T2) ETm acumulada = 33 mm; (T3) ETm acumulada = 44 mm; (T4) ausência de irrigação. Nas plantas com suprimento adequado de água, os maiores valores de condutância estomática ocorreram por volta do meio-dia solar, atingindo cerca de 159 e 174 mmol m-2 s-1, para T1 e T2, respectivamente, enquanto nos tratamentos T3 e T4, os maiores valores encontrados foram de 83 e 52 mmol m-2 s-1, respectivamente. A condutância estomática ao longo do ciclo apresentou valor máximo de 165 mmol m-2 s-1 para o tratamento T4, enquanto para T1 e T2 os valores máximos obtidos variaram de 179 a 183 mmol m-2 s-1. A temperatura da folha e a transpiração apresentaram estreita relação com a resistência estomática, enquanto a radiação fotossinteticamente ativa não diferiu entre os tratamentos.