3 resultados para Sr isotope
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The Cretaceous Barra do Itapirapua carbonatite in southern Brazil experienced extensive postmagmatic hydrothermal alteration. In this article, Sr and Nd isotope ratios of coexisting samples of hydrothermally overprinted and of preserved, nonoverprinted carbonatite are presented. Hydrothermal alteration caused strong REE enrichment, leading to the formation of minerals of the bastnaesite group. In the overprinted carbonatite, Nd contents reach 4000 ppm, two orders of magnitude higher than in the fresh carbonatite, but epsilon(Nd) varies only within a range of 3.4 units. In contrast, Sr was leached from the carbonatite during the postmagmatic alteration; hence values of around 10,000 ppm in the fresh carbonatite drop to about 1000 ppm in the overprinted samples. Leaching is accompanied by a variation of Sr isotopic composition toward more radiogenic values, resulting in an increase of 15 units in epsilon(Sr). Variation of Sr isotopic composition is related to postmagmatic alteration and is decoupled from the variation of Nd isotopic composition, ruling out heterogeneities in the mantle source as the main cause of isotopic variability in the data set. Furthermore, this cannot be explained by bulk crustal contamination. A two-step model is proposed in which (1) a REE-rich, carbonatite-derived hydrothermal fluid overprinted the pristine carbonatite, causing REE-enrichment with a relative small change of isotopic composition; and (2) crust-derived hydrothermal fluids percolated the cooling carbonatite, leaching the original Sr from the carbonatite and introducing a more radiogenic Sr isotopic signature. The amounts of carbonatite-derived Nd with primitive, carbonatite-like Nd isotope ratios introduced during the first stage of hydrothermal alteration are high enough to buffer the effect of crust-derived Nd on the Nd isotopic composition of the overprinted carbonatite.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
There has been little research on geochemistry and isotopic compositions in tholeiites of the Northern region from the Paraná Continental Flood Basalts (PCFB), one of the largest continental provinces of the world. In order to examine the mantle sources involved in the high-Ti (Pitanga and Paranapanema) basalt genesis, we studied Sr, Nd, and Pb isotopic systematics, and major, minor and incompatible trace element abundances. The REE patterns of the investigated samples (Pitanga and Paranapanema magma type) are similar (parallel to) to those of Island Arc Basalts' REE patterns. The high-Ti basalts investigated in this study have initial (133Ma) 87Sr/86Sr ratios of 0.70538-0.70642, 143Nd/144Nd of 0.51233-0.51218, 206Pb/204Pb of 17.74-18.25, 207Pb/204Pb of 15.51-15.57, and 208Pb/204Pb of 38.18-38.45. These isotopic compositions do not display any correlation with Nb/Th, Nb/La or P2O5/K2O ratios, which also reflect that these rocks were not significantly affected by low-pressure crustal contamination. The incompatible trace element ratios and Sr-Nd-Pb isotopic compositions of the PCFB tholeiites are different to those found in Tristan da Cunha ocean island rocks, showing that this plume did not play a substantial role in the PCFB genesis. This interpretation is corroborated by previously published osmium isotopic data (initial γOs values range from+1.0 to+2.0 for high-Ti basalts), which also preclude basalt generation by melting of ancient subcontinental lithospheric mantle. The geochemical composition of the northern PCFB may be explained through the involvement of fluids and/or small volume melts related to metasomatic processes. In this context, we propose that the source of these magmas is a mixture of sublithospheric peridotite veined and/or interlayered with mafic components (e.g., pyroxenites or eclogites). The sublithospheric mantle (dominating the osmium isotopic compositions) was very probably enriched by fluids and/or magmas related to the Neoproterozoic subduction processes. This sublithospheric mantle region may have been frozen and coupled to the base of the Parana basin lithospheric plate above which the Paleozoic subsidence and subsequent Early Cretaceous magmatism occurred. © 2013 Elsevier Ltd.