63 resultados para Spiroacetal biosynthesis
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Extraction of the leaves of Chimarrhis turbinata has led to the isolation of turbinatine (1), a new corynanthean-type indole alkaloid, besides four known indole alkaloids, strictosidine, 5alpha-carboxystrictosidine, vallesiachotamine, and isovallesiachotamine. The structural determination of 1 was based on 1D and 2D spectroscopic data. An evaluation of the DNA-damaging activities of the isolates was performed by means of a bioassay using mutant strains of Saccharomyces cerevisiae, which indicated these compounds were weakly active.
Resumo:
The initiation of glycogen synthesis requires the protein glycogenin, which incorporates glucose residues through a self-glucosylation reaction, and then acts as substrate for chain elongation by glycogen synthase and branching enzyme. Numerous sequences of glycogenin-like proteins are available in the databases but the enzymes from mammalian skeletal muscle and from Saccharomyces cerevisiae are the best characterized. We report the isolation of a cDNA from the fungus Neurospora crassa, which encodes a protein, GNN, which has properties characteristic of glycogenin. The protein is one of the largest glycogenins but shares several conserved domains common to other family members. Recombinant GNN produced in Escherichia coli was able to incorporate glucose in a self-glucosylation reaction, to trans-glucosylate exogenous substrates, and to act as substrate for chain elongation by glycogen synthase. Recombinant protein was sensitive to C-terminal proteolysis, leading to stable species of around 31 kDa, which maintained all functional properties. The role of GNN as an initiator of glycogen metabolism was confirmed by its ability to complement the glycogen deficiency of a S. cerevisiae strain (glg1 glg2) lacking glycogenin and unable to accumulate glycogen. Disruption of the gnn gene of N. crassa by repeat induced point mutation (RIP) resulted in a strain that was unable to synthesize glycogen, even though the glycogen synthase activity was unchanged. Northern blot analysis showed that the gnn gene was induced during vegetative growth and was repressed upon carbon starvation. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Twenty-one-day old male Wistar rats were injected subcutaneously with guanethidine (GUA) at doses of 5 and 10 mg kg(-1) day(-1) for 20 days. Animals were sacrificed by decapitation during the prepubertal (41 days of age) and early-pubertal (51 days of age) periods of sexual development. The testes were collected, frozen in liquid N-2 and stored at -70 degrees C until determination of testicular progesterone (P): androstenedione (A) and testosterone (T). Higher levels of P (2.18 +/- 0.24 ng/g. control = 1.24 +/- 0.16 ng/g) associated with decreased levels of androgens (A = 0.26 +/- 0.06 ng/g and T = 2.05 +/- 0.19 ng/g; control = 1.86 +/- 0.76 ng/g and 8.48 +/- 1.16 ng/g, respectively) were observed in 10 mg GUA-treated rats of prepubertal age, while only P levels (3.12 +/- 0.51 ng/g control = 1.73 +/- 0.27 ng/g) were increased in rats of early pubertal age. It is important to note that in 41-day old male rats both 5 and 10 mg were effective in decreasing testicular concentration of testosterone. These results suggest that the sympathetic innervation of the testis is involved in the modulation of androgen biosynthesis, acting through a selective step in the steroid biochemical pathway during the pubertal process and that under the conditions employed the blockage in androgen biosynthesis in the prepubertal stage of sexual maturation is dependent on the dose of GUA.
Resumo:
Maytenus aquifolium (Celastraceae) and Salacia campestris (Hippocrateaceae) species accumulate friedelane and quinonemethide triterpenoids in their leaves and root bark, respectively. Enzymatic extracts obtained from leaves displayed cyclase activity with conversion of the substrate oxidosqualene to the triterpenes, 3 beta -friedelanol and friedelin. In addition, administration of (+/-)5-H-3 mevalonolactone in leaves of M. aquifolium seedlings produced radio labelled friedelin in the leaves, twigs and stems, while the root bark accumulated labelled maytenin and pristimerin. These experiments indicated that the triterpenes once biosynthesized in the leaves are translocated to the root bark and further transformed to the antitumoral quinonemethide triterpenoids. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The biosynthesis of chondroitinase and hyaluronidase by different isolates of Paracoccidioides brasiliensis was investigated in 20 strains isolated from patients (17 strains), a penguin (Pygocelis adeliae, one strain), an armadillo (Dasypus novemcinctus, one strain) and the environment (dog food, one strain). All the P. brasiliensis isolates studied had the ability to produce chondroitinase and hyaluronidase, although differences in colony morphology and enzyme production were detected among them. These results suggest that further investigations should be carried out in the clinical field in order to clarify the potential role of P. brasiliensis enzyme production in the pathogenesis of paracoccidioidomycosis.
Resumo:
The objective of this research was to investigate the potential of xylanase production by Aspergillus japonicus and to determine the effects of cultivation conditions in the process, aiming toward optimization of enzyme production. The best temperature, as well as the best carbon source, for biomass production was determined through an automated turbidimetric method (Bioscreen-C). The enzyme activity of this fungus was separately evaluated in two solid substrates (wheat and soybean bran) and in Vogel medium, adding other carbon sources. Temperature effects, cultivation time, and spore concentrations were also tested. The best temperature for enzyme and biomass production was 25°C; however, the best carbon source for growth (determined by the Bioscreen C) did not turn out to be a good inducer of xylanase production. Maximum xylanase activity was achieved when the fungus was cultivated in wheat bran (without the addition of any other carbon source) using a spore concentration of 1 × 107 spores/mL (25°C, pH 5.0, 120 h). A. japonicus is a good xylanase producer under the conditions presented in these assays. © 2006 Academic Journals.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
FMN riboswitches are genetic elements that, in many bacteria, control genes responsible for biosynthesis and/or transport of riboflavin (vitamin B2 ). We report that the Escherichia coli ribB FMN riboswitch controls expression of the essential gene ribB coding for the riboflavin biosynthetic enzyme 3,4-dihydroxy-2-butanone-4-phosphate synthase (RibB; EC 4.1.99.12). Our data show that the E. coli ribB FMN riboswitch is unusual because it operates at the transcriptional and also at the translational level. Expression of ribB is negatively affected by FMN and by the FMN analog roseoflavin mononucleotide, which is synthesized enzymatically from roseoflavin and ATP. Consequently, in addition to flavoenzymes, the E. coli ribB FMN riboswitch constitutes a target for the antibiotic roseoflavin produced by Streptomyces davawensis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The recent recrudescence of Mycobacterium tuberculosis infection and the emergence of multidrug-resistant strains have created an urgent need for new therapeutics against tuberculosis. The enzymes of the shikimate pathway are attractive drug targets because this route is absent in mammals and, in M. tuberculosis, it is essential for pathogen viability. This pathway leads to the biosynthesis of aromatic compounds, including aromatic amino acids, and it is found in plants, fungi, bacteria, and apicomplexan parasites. The aroB-encoded enzyme dehydroquinate synthase is the second enzyme of this pathway, and it catalyzes the cyclization of 3-deoxy-D-arabino-heptulosonate-7-phosphate in 3-dehydroquinate. Here we describe the PCR amplification and cloning of the aroB gene and the overexpression and purification of its product, dehydroquinate synthase, to homogeneity. In order to probe where the recombinant dehydroquinate synthase was active, genetic complementation studies were performed. The Escherichia coli AB2847 mutant was used to demonstrate that the plasmid construction was able to repair the mutants, allowing them to grow in minimal medium devoid of aromatic compound supplementation. In addition, homogeneous recombinant M. tuberculosis dehydroquinate synthase was active in the absence of other enzymes, showing that it is homomeric. These results will support the structural studies with M. tuberculosis dehydroquinate synthase that are essential for the rational design of antimycobacterial agents.