18 resultados para Spinning machinery
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The putative translation factor eIF5A is essential for cell viability and is highly conserved from archebacteria to mammals. Although this protein was originally identified as a translation initiation factor, subsequent experiments did not support a role for eIF5A in general translation. In this work, we demonstrate that eIF-5A interacts with structural components of the 80S ribosome, as well as with the translation elongation factor 2 (eEF2). Moreover, eIF5A is further shown to cofractionate with monosomes in a translation-dependent manner. Finally, eIF5A mutants show altered polysome profiles and are sensitive to translation inhibitors. Our results re-establish a function for eIF5A in translation and suggest a role for this factor in translation elongation instead of translation initiation. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We consider a field theory with target space being the two dimensional sphere S-2 and defined on the space-time S-3 x R. The Lagrangean is the square of the pull-back of the area form on S-2. It is invariant under the conformal group SO(4, 2) and the infinite dimensional group of area preserving diffeomorphisms of S-2. We construct an infinite number of exact soliton solutions with non-trivial Hopf topological charges. The solutions spin with a frequency which is bounded above by a quantity proportional to the inverse of the radius of S-3. The construction of the solutions is made possible by an ansatz which explores the conformal symmetry and a U(1) subgroup of the area preserving diffeomorphism group.
Resumo:
Ferralsols have high structural stability, although structural degradation has been observed to result from forest to tillage or pasture conversion. An experimental series of forest skidder passes in an east Amazonian natural forest was performed for testing the effects of mechanical stress during selective logging operations on a clay-rich Ferralsol under both dry and wet soil conditions. Distinct ruts formed up to 25 cm depth only under wet conditions. After nine passes the initially very low surface bulk density of between 0.69 and 0.80 g cm(-3) increased to 1.05 g cm(-3) in the wet soil and 0.92 g cm(-3) in the dry soil. Saturated hydraulic conductivities, initially > 250 mm h(-1), declined to a minimum of around 10 mm h(-1) in the wet soil after the first pass, and in the dry soil more gradually after nine passes. The contrasting response of bulk density and saturated hydraulic conductivity is explained by exposure of subsoil material at the base of the ruts where macrostructure rapidly deteriorated under wet conditions. We attribute the resultant moderately high hydraulic conductivities to the formation of stable microaggregates with fine sand to coarse silt textures. We conclude that the topsoil macrostructure of Ferralsols is subject to similar deterioration to that of Luvisols in temperate zones. The stable microstructure prevents marked compaction and decrease in hydraulic conductivity under wetter and more plastic soil conditions. However, typical tropical storms may regularly exceed the infiltration capacity of the deformed soils. In the deeper ruts water may concentrate and cause surface run-off, even in gently sloping areas. To avoid soil erosion, logging operations in sloping areas should therefore be restricted to dry soil conditions when rut formation is minimal.
Resumo:
This work is a natural continuation of our recent study in quantizing relativistic particles. There it was demonstrated that, by applying a consistent quantization scheme to the classical model of a spinless relativistic particle as well as to the Berezin-Marinov model of a 3 + 1 Dirac particle, it is possible to obtain a consistent relativistic quantum mechanics of such particles. In the present paper, we apply a similar approach to the problem of quantizing the massive 2 + 1 Dirac particle. However, we stress that such a problem differs in a nontrivial way from the one in 3 + 1 dimensions. The point is that in 2 + 1 dimensions each spin polarization describes different fermion species. Technically this fact manifests itself through the presence of a bifermionic constant and of a bifermionic first-class constraint. In particular, this constraint does not admit a conjugate gauge condition at the classical level. The quantization problem in 2 + 1 dimensions is also interesting from the physical viewpoint (e.g., anyons). In order to quantize the model, we first derive a classical formulation in an effective phase space, restricted by constraints and gauges. Then the condition of preservation of the classical symmetries allows us to realize the operator algebra in an unambiguous way and construct an appropriate Hilbert space. The physical sector of the constructed quantum mechanics contains spin-1/2 particles and antiparticles without an infinite number of negative-energy levels, and exactly reproduces the one-particle sector of the 2 + 1 quantum theory of a spinor field.
Resumo:
A formulation used to determine the time-optimal geomagnetic attitude maneuvers subject to dynamic and geometric constraints is proposed in this paper. This was obtained by a direct search procedure based on a control function parametrization method, using linear programming to obtain numerical suboptimal solutions by linear perturbation. Due to its characteristics it can be used in small computers and to generate computer programs of general application. The dynamic modeling, the magnetic torque model and the suboptimal control procedure are presented. Simulation runs have verified the feasibility of the formulation thus derived and have shown a notable improvement in performance.
Resumo:
Starting from the deregulated process of the Electric Sector, there was the need to attribute responsibilities to several agents and to elaborate appropriate forms of remuneration of the services rendered by the same. One of the services of great importance within this new electric sector is the Ancillary Services. Among the various types of Ancillary Services, Spinning Reserve is a service necessary for maintaining the integrity of the transmission system from either generation interruptions or load variations. This paper uses the application of the Economic Dispatch theory with the objective of quantifies the availability of Spinning Reserve supply in hydroelectric plants. The proposed methodology utilizes the generating units as well as their efficiencies so as to attend the total demand with the minimum water discharge. The proposed methodology was tested through the data provided by the Água Vermelha Hydroelectric Power Plant. These tests permitted the opportunity cost valuation to the Spinning Reserve supply in hydroelectric plants. © 2005 IEEE.
Resumo:
We consider a field theory with target space being the two dimensional sphere S2 and defined on the space-time S3 × . The Lagrangean is the square of the pull-back of the area form on S2. It is invariant under the conformal group SO(4,2) and the infinite dimensional group of area preserving diffeomorphisms of S2. We construct an infinite number of exact soliton solutions with non-trivial Hopf topological charges. The solutions spin with a frequency which is bounded above by a quantity proportional to the inverse of the radius of S3. The construction of the solutions is made possible by an ansatz which explores the conformal symmetry and a U(1) subgroup of the area preserving diffeomorphism group. © SISSA 2006.
Resumo:
The recent years have seen the appearance of innovative system for acoustic and vibration attenuation, most of them integrating new actuator technologies. In this sense, the study of algorithms for active vibrations control in rotating machinery became an area of enormous interest, mainly due to countless demands of an optimal performance of mechanical systems in aircraft, aerospace and automotive structures. In this way, this paper presents an approach that is numerically verified for active vibration control in a rotor using Active Magnetic Bearings (AMB). The control design in a discrete state-space formulation is carried out through feedback technique and Linear Matrix Inequalities (LMI) approach. LMI is useful for system with uncertainties. The AMB uses electromagnetic forces to support a rotor without mechanical contact. By monitoring the position of the shaft and changing the dynamics of the system accordingly, the AMB keeps the rotor in a desired position. This unique feature has broadened for the applications of AMB and now they can be considered not only as a main support bearing in a machine but also as dampers for vibration control and force actuators. © 2009 Society for Experimental Mechanics Inc.
Resumo:
The real-time monitoring of events in an industrial plant is vital, to monitor the actual conditions of operation of the machinery responsible for the manufacturing process. A predictive maintenance program includes condition monitoring of the rotating machinery, to anticipate possible conditions of failure. To increase the operational reliability it is thus necessary an efficient tool to analyze and monitor the equipments, in real-time, and enabling the detection of e.g. incipient faults in bearings. To fulfill these requirements some innovations have become frequent, namely the inclusion of vibration sensors or stator current sensors. These innovations enable the development of new design methodologies that take into account the ease of future modifications, upgrades, and replacement of the monitored machine, as well as expansion of the monitoring system. This paper presents the development, implementation and testing of an instrument for vibration monitoring, as a possible solution to embed in industrial environment. The digital control system is based on an FPGA, and its configuration with an open hardware design tool is described. Special focus is given to the area of fault detection in rolling bearings. © 2012 IEEE.
Resumo:
Neem oil is a biopesticide that disturbs the endocrine and neuroendocrine systems of pests and may interfere with molting, metamorphosis and cocoon spinning. The cocoon serves protective functions for the pupa during metamorphosis, and these functions are dependent on cocoon structure. To assess the changes in cocoon spinning caused by neem oil ingestion, Ceraeochrysa claveri larvae, a common polyphagous predator, were fed with neem oil throughout the larval period. When treated with neem oil, changes were observed on the outer and inner surfaces of the C. claveri cocoon, such as decreased wall thickness and impaired ability to attach to a substrate. These negative effects may reduce the effectiveness of the mechanical and protective functions of cocoons during pupation, which makes the specimen more vulnerable to natural enemies and environmental factors. © 2013 Elsevier Inc.
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Pós-graduação em Geografia - IGCE
Resumo:
The present study aimed to develop a methodology for the collection, transfer, storage and processing of vibration levels emitted in jobs occupied in agricultural machinery. The reason of this work is the study the vibration dose applied to operators of heavy vehicles and its relation to occupational health, linking the still high number of accidents involving farm machinery in relation to overturning (tipping). There is a need for the development and improvement of efficient tools in measuring vibration and tilt machine work, which minimize damage to health and accident risks for operators.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)