57 resultados para Spinning
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We consider a field theory with target space being the two dimensional sphere S-2 and defined on the space-time S-3 x R. The Lagrangean is the square of the pull-back of the area form on S-2. It is invariant under the conformal group SO(4, 2) and the infinite dimensional group of area preserving diffeomorphisms of S-2. We construct an infinite number of exact soliton solutions with non-trivial Hopf topological charges. The solutions spin with a frequency which is bounded above by a quantity proportional to the inverse of the radius of S-3. The construction of the solutions is made possible by an ansatz which explores the conformal symmetry and a U(1) subgroup of the area preserving diffeomorphism group.
Resumo:
This work is a natural continuation of our recent study in quantizing relativistic particles. There it was demonstrated that, by applying a consistent quantization scheme to the classical model of a spinless relativistic particle as well as to the Berezin-Marinov model of a 3 + 1 Dirac particle, it is possible to obtain a consistent relativistic quantum mechanics of such particles. In the present paper, we apply a similar approach to the problem of quantizing the massive 2 + 1 Dirac particle. However, we stress that such a problem differs in a nontrivial way from the one in 3 + 1 dimensions. The point is that in 2 + 1 dimensions each spin polarization describes different fermion species. Technically this fact manifests itself through the presence of a bifermionic constant and of a bifermionic first-class constraint. In particular, this constraint does not admit a conjugate gauge condition at the classical level. The quantization problem in 2 + 1 dimensions is also interesting from the physical viewpoint (e.g., anyons). In order to quantize the model, we first derive a classical formulation in an effective phase space, restricted by constraints and gauges. Then the condition of preservation of the classical symmetries allows us to realize the operator algebra in an unambiguous way and construct an appropriate Hilbert space. The physical sector of the constructed quantum mechanics contains spin-1/2 particles and antiparticles without an infinite number of negative-energy levels, and exactly reproduces the one-particle sector of the 2 + 1 quantum theory of a spinor field.
Resumo:
A formulation used to determine the time-optimal geomagnetic attitude maneuvers subject to dynamic and geometric constraints is proposed in this paper. This was obtained by a direct search procedure based on a control function parametrization method, using linear programming to obtain numerical suboptimal solutions by linear perturbation. Due to its characteristics it can be used in small computers and to generate computer programs of general application. The dynamic modeling, the magnetic torque model and the suboptimal control procedure are presented. Simulation runs have verified the feasibility of the formulation thus derived and have shown a notable improvement in performance.
Resumo:
Starting from the deregulated process of the Electric Sector, there was the need to attribute responsibilities to several agents and to elaborate appropriate forms of remuneration of the services rendered by the same. One of the services of great importance within this new electric sector is the Ancillary Services. Among the various types of Ancillary Services, Spinning Reserve is a service necessary for maintaining the integrity of the transmission system from either generation interruptions or load variations. This paper uses the application of the Economic Dispatch theory with the objective of quantifies the availability of Spinning Reserve supply in hydroelectric plants. The proposed methodology utilizes the generating units as well as their efficiencies so as to attend the total demand with the minimum water discharge. The proposed methodology was tested through the data provided by the Água Vermelha Hydroelectric Power Plant. These tests permitted the opportunity cost valuation to the Spinning Reserve supply in hydroelectric plants. © 2005 IEEE.
Resumo:
We consider a field theory with target space being the two dimensional sphere S2 and defined on the space-time S3 × . The Lagrangean is the square of the pull-back of the area form on S2. It is invariant under the conformal group SO(4,2) and the infinite dimensional group of area preserving diffeomorphisms of S2. We construct an infinite number of exact soliton solutions with non-trivial Hopf topological charges. The solutions spin with a frequency which is bounded above by a quantity proportional to the inverse of the radius of S3. The construction of the solutions is made possible by an ansatz which explores the conformal symmetry and a U(1) subgroup of the area preserving diffeomorphism group. © SISSA 2006.
Resumo:
Neem oil is a biopesticide that disturbs the endocrine and neuroendocrine systems of pests and may interfere with molting, metamorphosis and cocoon spinning. The cocoon serves protective functions for the pupa during metamorphosis, and these functions are dependent on cocoon structure. To assess the changes in cocoon spinning caused by neem oil ingestion, Ceraeochrysa claveri larvae, a common polyphagous predator, were fed with neem oil throughout the larval period. When treated with neem oil, changes were observed on the outer and inner surfaces of the C. claveri cocoon, such as decreased wall thickness and impaired ability to attach to a substrate. These negative effects may reduce the effectiveness of the mechanical and protective functions of cocoons during pupation, which makes the specimen more vulnerable to natural enemies and environmental factors. © 2013 Elsevier Inc.
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Diamond-like carbon (DLC) films were obtained by spinning a tungsten carbide substrate at a high speed using an oxyacetylene flame. The films deposited at a typical experimental condition of substrate temperature of 810 degrees C, rotation of 600 rpm and 3 h deposition time, exhibited an uniform, very smooth, hard and glassy surface covering the entire exposed face of the substrate. These films were identified as DLC by their characteristic broad Raman spectra centered at 1554 cm(-1) and micro-Vicker's hardness > 3400 kg mm(-2). For substrate temperatures < 800 degrees C the film started losing the uniform glassy surface and the hardness deteriorated. For temperatures > 950 degrees C the film was still hard and shiny, but black in color. DLC films were also obtained in a wide range of speeds of rotation (300-750 rpm), as long as the temperature remained close to 850 degrees C. (C) 1999 Elsevier B.V. S.A. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
According to the teleparallel equivalent of general relativity, curvature and torsion are two equivalent ways of describing the same gravitational field. Though equivalent, they act differently: curvature yields a geometric description, in which the concept of gravitational force is absent whereas torsion acts as a true gravitational force, quite similar to the Lorentz force of electrodynamics. As a consequence, the right-hand side of a spinless-particle equation of motion (which would represent a gravitational force) is always zero in the geometric description, but not in the teleparallel case. This means that the gravitational coupling prescription can be minimal only in the geometric case. Relying on this property, a new gravitational coupling prescription in the presence of curvature and torsion is proposed. It is constructed in such a way to preserve the equivalence between curvature and torsion, and its basic property is to be equivalent to the usual coupling prescription of general relativity. According to this view, no new physics is connected with torsion, which is just an alternative to curvature in the description of gravitation. An application of this formulation to the equations of motion of both a spinless and a spinning particle is discussed.