49 resultados para Spatial Mixture Models

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considering the importance of spatial issues in transport planning, the main objective of this study was to analyze the results obtained from different approaches of spatial regression models. In the case of spatial autocorrelation, spatial dependence patterns should be incorporated in the models, since that dependence may affect the predictive power of these models. The results obtained with the spatial regression models were also compared with the results of a multiple linear regression model that is typically used in trips generation estimations. The findings support the hypothesis that the inclusion of spatial effects in regression models is important, since the best results were obtained with alternative models (spatial regression models or the ones with spatial variables included). This was observed in a case study carried out in the city of Porto Alegre, in the state of Rio Grande do Sul, Brazil, in the stages of specification and calibration of the models, with two distinct datasets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Estudos regionais mais detalhados, utilizando modelos de paisagem e geoestatística, têm demonstrado que, em áreas consideradas homogêneas, sob uma única classe de solo, existe dependência espacial de atributos granulométricos. Visando a avaliar a variabilidade espacial de atributos granulométricos em Latossolo Vermelho eutroférrico, foram feitas amostragens do solo em intervalos regulares de 50 m, em forma de malha, totalizando 306 pontos de amostragem. Foram coletadas amostras nas profundidades de 0-0,2 m e 0,6-0,8 m para a determinação da argila, silte, areia total (AT), areia grossa (AG), areia média (AM), areia fina (AF) e areia muito fina (AMF). Os dados foram submetidos à análise estatística descritiva, geoestatística e interpolação por krigagem. Os valores do coeficiente de variação apresentaram-se baixos para argila, médios para silte, AT, AF, AM e AMF e altos para AG. Observou-se ocorrência de dependência espacial para todas as variáveis com grau moderado de dependência espacial, com os maiores alcances ocorrendo na profundidade de 0-0,2 m. Os latossolos, apesar de serem homogêneos, mesmo em áreas de mesma classe de solo e manejo, apresentaram variabilidade diferenciada para os atributos granulométricos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Em uma paisagem natural, os solos apresentam uma ampla variação dos atributos químicos, tanto vertical como horizontal, resultante da interação dos diversos fatores de formação envolvidos. Este trabalho foi desenvolvido em Guariba-SP, com o objetivo de avaliar a variabilidade espacial do pH, cálcio (Ca), magnésio (Mg) e saturação por bases (V%) em um Latossolo Vermelho eutroférrico sob cultivo de cana-de-açúcar, utilizando-se métodos da estatística clássica, análise geoestatística e técnica de interpolação de dados, com a finalidade de observar padrões de ocorrência destes atributos na paisagem. No terço inferior da encosta, após análise detalhada da variação do gradiente do declive, caracterizaram-se dois compartimentos (I e II), sob os quais os solos foram amostrados nos pontos de cruzamento de uma malha, com intervalos regulares de 50m, perfazendo um total de 206 pontos, nas profundidades de 0,0-0,2m e 0,6-0,8m. Os maiores alcances foram observados na profundidade de 0,0-0,2m para todos os atributos estudados, com exceção do cálcio que apresentou comportamento inverso, refletindo os efeitos do maior grau de intemperismo e do manejo na variabilidade natural dos solos. Pequenas variações, nas formas do relevo, condicionam variabilidade diferenciada para os atributos químicos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Discriminative training of Gaussian Mixture Models (GMMs) for speech or speaker recognition purposes is usually based on the gradient descent method, in which the iteration step-size, ε, uses to be defined experimentally. In this letter, we derive an equation to adaptively determine ε, by showing that the second-order Newton-Raphson iterative method to find roots of equations is equivalent to the gradient descent algorithm. © 2010 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this work is to discriminate vegetation classes throught remote sensing images from the satellite CBERS-2, related to winter and summer seasons in the Campos Gerais region Paraná State, Brazil. The vegetation cover of the region presents different kinds of vegetations: summer and winter cultures, reforestation areas, natural areas and pasture. Supervised classification techniques like Maximum Likelihood Classifier (MLC) and Decision Tree were evaluated, considering a set of attributes from images, composed by bands of the CCD sensor (1, 2, 3, 4), vegetation indices (CTVI, DVI, GEMI, NDVI, SR, SAVI, TVI), mixture models (soil, shadow, vegetation) and the two first main components. The evaluation of the classifications accuracy was made using the classification error matrix and the kappa coefficient. It was defined a high discriminatory level during the classes definition, in order to allow separation of different kinds of winter and summer crops. The classification accuracy by decision tree was 94.5% and the kappa coefficient was 0.9389 for the scene 157/128. For the scene 158/127, the values were 88% and 0.8667, respectively. The classification accuracy by MLC was 84.86% and the kappa coefficient was 0.8099 for the scene 157/128. For the scene 158/127, the values were 77.90% and 0.7476, respectively. The results showed a better performance of the Decision Tree classifier than MLC, especially to the classes related to cultivated crops, indicating the use of the Decision Tree classifier to the vegetation cover mapping including different kinds of crops.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to estimate the spatial distribution of work accident risk in the informal work market in the urban zone of an industrialized city in southeast Brazil and to examine concomitant effects of age, gender, and type of occupation after controlling for spatial risk variation. The basic methodology adopted was that of a population-based case-control study with particular interest focused on the spatial location of work. Cases were all casual workers in the city suffering work accidents during a one-year period; controls were selected from the source population of casual laborers by systematic random sampling of urban homes. The spatial distribution of work accidents was estimated via a semiparametric generalized additive model with a nonparametric bidimensional spline of the geographical coordinates of cases and controls as the nonlinear spatial component, and including age, gender, and occupation as linear predictive variables in the parametric component. We analyzed 1,918 cases and 2,245 controls between 1/11/2003 and 31/10/2004 in Piracicaba, Brazil. Areas of significantly high and low accident risk were identified in relation to mean risk in the study region (p < 0.01). Work accident risk for informal workers varied significantly in the study area. Significant age, gender, and occupational group effects on accident risk were identified after correcting for this spatial variation. A good understanding of high-risk groups and high-risk regions underpins the formulation of hypotheses concerning accident causality and the development of effective public accident prevention policies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The variation of soil textural characteristics is a function of the relief and parent materials. The objective of this work was to study soil texture spatial variability from different parent material in Pereira Barreto, SP. An area of 530.67 hectares was mapped through the use of Global Positioning System receivers and obtaining of Digital Elevation Models. A set of 201 soil samples was collected from every seven hectares, at three depths: 0 - 0.25 m; 0.25 - 0.50 m; and 0.80 - 1.00 m. The amounts of sand, silt and clay were obtained by the pipette method and analyzed by both descriptive statistics and geostatistics. Soil textures varied as a function of parent materials and topography.