46 resultados para Spatial Data Quality
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The increase in new electronic devices had generated a considerable increase in obtaining spatial data information; hence these data are becoming more and more widely used. As well as for conventional data, spatial data need to be analyzed so interesting information can be retrieved from them. Therefore, data clustering techniques can be used to extract clusters of a set of spatial data. However, current approaches do not consider the implicit semantics that exist between a region and an object’s attributes. This paper presents an approach that enhances spatial data mining process, so they can use the semantic that exists within a region. A framework was developed, OntoSDM, which enables spatial data mining algorithms to communicate with ontologies in order to enhance the algorithm’s result. The experiments demonstrated a semantically improved result, generating more interesting clusters, therefore reducing manual analysis work of an expert.
Resumo:
The increase in the number of spatial data collected has motivated the development of geovisualisation techniques, aiming to provide an important resource to support the extraction of knowledge and decision making. One of these techniques are 3D graphs, which provides a dynamic and flexible increase of the results analysis obtained by the spatial data mining algorithms, principally when there are incidences of georeferenced objects in a same local. This work presented as an original contribution the potentialisation of visual resources in a computational environment of spatial data mining and, afterwards, the efficiency of these techniques is demonstrated with the use of a real database. The application has shown to be very interesting in interpreting obtained results, such as patterns that occurred in a same locality and to provide support for activities which could be done as from the visualisation of results. © 2013 Springer-Verlag.
Spatial Data Mining to Support Environmental Management and Decision Making - A Case Study in Brazil
Resumo:
This work presents one software developed to process solar radiation data. This software can be used in meteorological and climatic stations, and also as a support for solar radiation measurements in researches of solar energy availability allowing data quality control, statistical calculations and validation of models, as well as ease interchanging of data. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Nowadays, with the expansion of the reference stations networks, several positioning techniques have been developed and/or improved. Among them, the VRS (Virtual Reference Station) concept has been very used. In this paper the goal is to generate VRS data in a modified technique. In the proposed methodology the DD (double difference) ambiguities are not computed. The network correction terms are obtained using only atmospheric (ionospheric and tropospheric) models. In order to carry out the experiments it was used data of five reference stations from the GPS Active Network of West of São Paulo State and an extra station. To evaluate the VRS data quality it was used three different strategies: PPP (Precise Point Positioning) and Relative Positioning in static and kinematic modes, and DGPS (Differential GPS). Furthermore, the VRS data were generated in the position of a real reference station. The results provided by the VRS data agree quite well with those of the real file data.
Resumo:
In geophysics and seismology, raw data need to be processed to generate useful information that can be turned into knowledge by researchers. The number of sensors that are acquiring raw data is increasing rapidly. Without good data management systems, more time can be spent in querying and preparing datasets for analyses than in acquiring raw data. Also, a lot of good quality data acquired at great effort can be lost forever if they are not correctly stored. Local and international cooperation will probably be reduced, and a lot of data will never become scientific knowledge. For this reason, the Seismological Laboratory of the Institute of Astronomy, Geophysics and Atmospheric Sciences at the University of São Paulo (IAG-USP) has concentrated fully on its data management system. This report describes the efforts of the IAG-USP to set up a seismology data management system to facilitate local and international cooperation. © 2011 by the Istituto Nazionale di Geofisica e Vulcanologia. All rights reserved.
Resumo:
The significant volume of work accidents in the cities causes an expressive loss to society. The development of Spatial Data Mining technologies presents a new perspective for the extraction of knowledge from the correlation between conventional and spatial attributes. One of the most important techniques of the Spatial Data Mining is the Spatial Clustering, which clusters similar spatial objects to find a distribution of patterns, taking into account the geographical position of the objects. Applying this technique to the health area, will provide information that can contribute towards the planning of more adequate strategies for the prevention of work accidents. The original contribution of this work is to present an application of tools developed for Spatial Clustering which supply a set of graphic resources that have helped to discover knowledge and support for management in the work accidents area. © 2011 IEEE.
Resumo:
Wireless Sensor Networks (WSNs) can be used to monitor hazardous and inaccessible areas. In these situations, the power supply (e.g. battery) of each node cannot be easily replaced. One solution to deal with the limited capacity of current power supplies is to deploy a large number of sensor nodes, since the lifetime and dependability of the network will increase through cooperation among nodes. Applications on WSN may also have other concerns, such as meeting temporal deadlines on message transmissions and maximizing the quality of information. Data fusion is a well-known technique that can be useful for the enhancement of data quality and for the maximization of WSN lifetime. In this paper, we propose an approach that allows the implementation of parallel data fusion techniques in IEEE 802.15.4 networks. One of the main advantages of the proposed approach is that it enables a trade-off between different user-defined metrics through the use of a genetic machine learning algorithm. Simulations and field experiments performed in different communication scenarios highlight significant improvements when compared with, for instance, the Gur Game approach or the implementation of conventional periodic communication techniques over IEEE 802.15.4 networks. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O objetivo deste trabalho foi avaliar cenários de níveis freáticos extremos, em bacia hidrográfica, por meio de métodos de análise espacial de dados geográficos. Avaliou-se a dinâmica espaço‑temporal dos recursos hídricos subterrâneos em área de afloramento do Sistema Aquífero Guarani. As alturas do lençol freático foram estimadas por meio do monitoramento de níveis em 23 piezômetros e da modelagem das séries temporais disponíveis de abril de 2004 a abril de 2011. Para a geração de cenários espaciais, foram utilizadas técnicas geoestatísticas que incorporaram informações auxiliares relativas a padrões geomorfológicos da bacia, por meio de modelo digital de terreno. Esse procedimento melhorou as estimativas, em razão da alta correlação entre altura do lençol e elevação, e agregou sentido físico às predições. Os cenários apresentaram diferenças quanto aos níveis considerados extremos - muito profundos ou muito superficiais - e podem subsidiar o planejamento, o uso eficiente da água e a gestão sustentável dos recursos hídricos na bacia.
Resumo:
OBJETIVO: Avaliar a prevalência de tracoma em escolares de Botucatu/SP-Brasil e a distribuição espacial dos casos. MÉTODOS: Foi realizado um estudo transversal, em crianças de 7-14 anos, que frequentavam as escolas do ensino fundamental de Botucatu/SP, em novembro/2005. O tamanho da amostra foi estimado em 2.092 crianças, considerando-se a prevalência histórica de 11,2%, aceitando-se erro de estimação de 10% e nível de confiança de 95%. A amostra foi probabilística, ponderada e acrescida de 20%, devido à possível ocorrência de perdas. Examinaram-se 2.692 crianças. O diagnóstico foi clínico, baseado na normatização da Organização Mundial da Saúde (OMS). Para avaliação dos dados espaciais, utilizou-se o programa CartaLinx (v1.2), sendo os setores de demanda escolar digitalizados de acordo com as divisões do planejamento da Secretaria de Educação. Os dados foram analisados estatisticamente, sendo a análise da estrutura espacial dos eventos calculadas usando o programa Geoda. RESULTADOS: A prevalência de tracoma nos escolares de Botucatu foi de 2,9%, tendo sido detectados casos de tracoma folicular. A análise exploratória espacial não permitiu rejeitar a hipótese nula de aleatoriedade (I= -0,45, p>0,05), não havendo setores de demanda significativos. A análise feita para os polígonos de Thiessen também mostrou que o padrão global foi aleatório (I= -0,07; p=0,49). Entretanto, os indicadores locais apontaram um agrupamento do tipo baixo-baixo para um polígono ao norte da área urbana. CONCLUSÃO: A prevalência de tracoma em escolares de Botucatu foi de 2,9%. A análise da distribuição espacial não revelou áreas de maior aglomeração de casos. Embora o padrão global da doença não reproduza as condições socioeconômicas da população, a prevalência mais baixa do tracoma foi encontrada em setores de menor vulnerabilidade social.