12 resultados para Southern Railway (U.S.)
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The Eastern Blue Ridge Province of the southern Appalachians contains, in part, remnants of an Ordovician accretionary wedge complex formed during subduction of an oceanic tract before mid-Ordovician accretion with Laurentia. The Eastern Blue Ridge Province consists of metapelite and amphibolite intruded by low-K plutons, high-temperature (T >750 °C) Ordovician eclogite, and other high-pressure metamafic and meta-ultramafic rocks. Felsic plutons in the Eastern Blue Ridge Province are important time markers for regional-scale tectonics, deformation, and metamorphism. Plutons were thought to be related to either Taconian (Ordovician) or Acadian (Devonian-Silurian) tectonothermal events. We dated five plutonic or metaplutonic rocks to constrain pluton crystallization ages better and thus the timing of tectonism. The Persimmon Creek gneiss yielded a protolith crystallization age of 455.7 ± 2.1 Ma, Chalk Mountain 377.7 ± 2.5 Ma, Mt. Airy 334 ± 3Ma, Stone Mountain 335.6 ± 1.0 Ma, and Rabun 335.1 ± 2.8 Ma. The latter four plutons were thought to be part of the Acadian Spruce Pine Suite, but instead our new ages indicate that Alleghanian (Carboniferous-Permian) plutonism is widespread and voluminous in the Eastern Blue Ridge Province. The Chattahoochee fault, which was considered an Acadian structure, cuts the Rabun pluton and thus must have been active during the Alleghanian orogeny. The new ages indicate that Persimmon Creek crystallized less than 3 m.y. after zircon crystallization in Eastern Blue Ridge eclogite and is nearly synchronous with nearby high-grade metamorphism and migmatization. The three phases of plutonism in the Eastern Blue Ridge Province correspond with established metamorphic ages for each of the three major orogenic pulses along the western flank of the southern Appalachians. © 2006 Geological Society of America.
Resumo:
The Brasília belt borders the western margin of the São Francisco Craton and records the history of ocean opening and closing related to the formation of West Gondwana. This study reports new U-Pb data from the southern sector of the belt in order to provide temporal limits for the deposition and ages of provenance of sediments accumulated in passive margin successions around the south and southwestern margins of the São Francisco Craton, and date the orogenic events leading to the amalgamation of West Gondwana. Ages of detrital zircons (by ID-TIMS and LA-MC-ICPMS) were obtained from metasedimentary units of the passive margin of the São Francisco Craton from the main tectonic domains of the belt: the internal allochthons (Araxá Group in the Áraxá and Passos Nappes), the external allochthons (Canastra Group, Serra da Boa Esperança Metasedimentary Sequence and Andrelândia Group) and the autochthonous or Cratonic Domain (Andrelândia Group). The patterns of provenance ages for these units are uniform and are characterised as follows: Archean- Paleoproterozoic ages (3.4-3.3, 3.1-2.7, and 2.5-2.4Ga); Paleoproterozoic ages attributed to the Transamazonian event (2.3-1.9Ga, with a peak at ca. 2.15Ga) and to the ca. 1.75Ga Espinhaço rifting of the São Francisco Craton; ages between 1.6 and 1.2Ga, with a peak at 1.3Ga, revealing an unexpected variety of Mesoproterozoic sources, still undetected in the São Francisco Craton; and ages between 0.9 and 1.0Ga related to the rifting event that led to the individualisation of the São Francisco paleo-continent and formation of its passive margins. An amphibolite intercalation in the Araxá Group yields a rutile age of ca. 0.9Ga and documents the occurrence of mafic magmatism coeval with sedimentation in the marginal basin. Detrital zircons from the autochthonous and parautochthonous Andrelândia Group, deposited on the southern margin of the São Francisco Craton, yielded a provenance pattern similar to that of the allochthonous units. This result implies that 1.6-1.2Ga source rocks must be present in the São Francisco Craton. They could be located either in the cratonic area, which is mostly covered by the Neoproterozoic epicontinental deposits of the Bambuí Group, or in the outer paleo-continental margin, buried under the allochthonous units of the Brasília belt. Crustal melting and generation of syntectonic crustal granites and migmatisation at ca. 630Ma mark the orogenic event that started with westward subduction of the São Francisco plate and ended with continental collision against the Paraná block (and Goiás terrane). Continuing collision led to the exhumation and cooling of the Araxá and Passos metamorphic nappes, as indicated by monazite ages of ca. 605Ma and mark the final stages of tectonometamorphic activity in the southern Brasília belt. Whilst continent-continent collision was proceeding on the western margin of the São Francisco Craton along the southern Brasília belt, eastward subduction in the East was generating the 634-599Ma Rio Negro magmatic arc which collided with the eastern São Francisco margin at 595-560Ma, much later than in the Brasília belt. Thus, the tectonic effects of the Ribeira belt reached the southernmost sector of the Brasília belt creating a zone of superposition. The thermal front of this event affected the proximal Andrelândia Group at ca. 588Ma, as indicated by monazite age. The participation of the Amazonian craton in the assembly of western Gondwana occurred at 545-500Ma in the Paraguay belt and ca. 500Ma in the Araguaia belt. This, together with the results presented in this work lead to the conclusion that the collision between the Paraná block and Goiás terrane with the São Francisco Craton along the Brasília belt preceded the accretion of the Amazonian craton by 50-100 million years. © 2003 Elsevier B.V. All rights reserved.
Resumo:
The area between São Paulo and Porto Alegre in southeastern Brazil plays a key area to understand and quantify the evolution of the South Atlantic passive continental margin (SAPCM) in Brazil. In this contribution, we present new thermochronological data attained by fission-track and (U-Th-Sm)/He analysis on apatites and zircons from metamorphic, sedimentary and intrusive rocks. The zircon fission-track ages range between 108.4 (15.0) and 539.9 (68.4). Ma, the zircon (U-Th-Sm)/He ages between 72.9 (5.8) and 525.1(2.4). Ma, whereas the apatite fission-track ages range between 40.0 (5.3) and 134.7 (8.0). Ma, and the apatite (U-Th-Sm)/He ages between 32.1 (1.5) and 93.0 (2.5). Ma. The spatial distribution of these ages shows three distinct blocks with a different evolution cut by old fracture zones. While the central block exhibits an old stable block, the Northern and especially the Southern block underwent complex post-rift exhumation. The sample of the Northern block shows two distinct cooling phases in the Upper Cretaceous and the Paleogene to Neogene. After sedimentation of the Permian sandstones the samples of the Central block were never heated up over 100. °C with a following moderate to fast cooling phase in Cretaceous to Eocene time and a fast cooling between Oligocene to Miocene. The five thermal models obtained in the Southern block indicate a complex evolution with three cooling phases. The exhumation events of the three blocks correspond with the Paraná-Etendekka event, the alkaline intrusions due to the Trinidad hotspot, and the evolution of the continental rift basins in SE Brazil and are, therefore, most likely to be the major force for the post-rift evolution of the passive continental margin in SE Brazil, which therefore corresponds to the three main phases of the Andean orogeny. © 2013 Elsevier B.V.
Resumo:
Whole rock Pb isotope data can be used to determine the provenance of different blocks within the Rodinia supercontinent, providing a test for paleogeographic reconstructions. Calculated isotopic values for the source region of the Grenville-deformed SW Amazon craton (Rondonia, Brazil), anchored by published U-Pb zircon ages, are compared to those from the Grenville belt of North America and Grenvillian basement inliers in the southern Appalachians. Both the SW Amazon craton and the allochthonous Blue Ridge/Mars Hill terrane are defined by a similar Pb isotopic signature, indicating derivation from an ancient source region with an elevated U/Pb ratio. In contrast, the Grenville Province of Laurentia (extending from Labrador to the Llano Uplift of Texas) is characterized by a source region with a distinctly lower, time-integrated U/Pb ratio. Published U-Pb zircon ages (ca. 1.8 Ga) and Nd model ages (1.4-2.2 Ga) for the Blue Ridge/Mars Hill terrane also suggest an ancient provenance very different from the rest of the adjacent Grenville belt, which is dominated by juvenile 1.3-1.5 Ga rocks. The presence of mature continental material in rocks older than 1.15 Ga in the Blue Ridge/ Mars Hill terrane is consistent with characteristics of basement rocks from the SW Amazon craton. High-grade metamorphism of the Blue Ridge/Mars Hill basement resulted in purging of U, consistent with observations of the rest of the North American Grenville province. In contrast, the Grenvillian metamorphic history of the Amazon appears to have been much more heterogeneous, with both U enrichment and U depletion recorded locally. We propose that the Blue Ridge/ Mars Hill portion of the Appalachian basement is of Amazonian provenance and was transferred to Laurentia during Grenvillian orogenesis after similar to1.15 Ga. The presence of these Amazonian rocks in southeastern Laurentia records the northward passage of the Amazon craton along the Laurentian margin, following the original collision with southernmost Laurentia at ca. 1.2 Ga. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We studied the diet of the Barn Owl (Tyto alba) in an agricultural area of southern Brazil (29degrees36'S, 52degrees11'W), based on analysis of regurgitated remains. The results clearly showed that the diet of the Barn Owl reflects the human impact on its habitat. The cosmopolitan house mouse (Mus musculus) was the most preyed upon small mammal (81.9%) and the most important in terms of the Barn Owl ingested biomass (69%). This rodent, due to its small size, is also responsible for the relatively low me-an weight off small mammal prey in the owl diet (19.6 g). In southern Brazilian agroecosystems, the Barn Owl probably feeds mainly on mice due to their great abundance in crop fields and grain storage areas of the region.
Resumo:
The Eastern Blue Ridge Province of the southern Appalachians contains, in part, remnants of an Ordovician accretionary wedge complex formed during subduction of an oceanic tract before mid-Ordovician accretion with Laurentia. The Eastern Blue Ridge Province consists of metapelite and amphibolite intruded by low-K plutons, high-temperature (T > 750 degrees C) Ordovician eclogite, and other high-pressure metamafic and meta-ultramatic rocks. Felsic plutons in the Eastern Blue Ridge Province are important time markers for regional-scale tectonics, deformation, and metamorphism. Plutons were thought to be related to either Taconian (Ordovician) or Acadian (Devonian-Silurian) tectonothermal events.We dated five plutonic or metaplutonic rocks to constrain pluton crystallization ages better and thus the timing of tectonism. The Persimmon Creek gneiss yielded a protolith crystallization age of 455.7 +/- 2.1 Ma, Chalk Mountain 377.7 +/- 2.5 Ma, Mt. Airy 334 +/- 3 Ma, Stone Mountain 335.6 +/- 1.0 Ma, and Rabun 335.1 +/- 2.8 Ma. The latter four plutons were thought to be part of the Acadian Spruce Pine Suite, but instead our new ages indicate that Alleghanian (Carboniferous-Permian) plutonism is widespread and voluminous in the Eastern Blue Ridge Province. The Chattahoochee fault, which was considered an Acadian structure, cuts the Rabun pluton and thus must have been active during the Alleghanian orogeny. The new ages indicate that Persimmon Creek crystallized less than 3 m.y. after zircon crystallization in Eastern Blue Ridge eclogite and is nearly synchronous with nearby high-grade metamorphism and migmatization. The three phases of plutonism in the Eastern Blue Ridge Province correspond with established metamorphic ages for each of the three major orogenic pulses along the western flank of the southern Appalachians.
Resumo:
The Borborema Province of NE Brasil comprises the central part of a wide Pan-African-Brasiliano orogenetic belt that formed as a consequence of late Neoproterozoic convergence and collision of the São Luis-West Africa craton and the São Francisco-Congo-Kasai cratons. New Sm Nd and U Pb results from the eastern part of this province help to define the basic internal architecture and pre-collisional history of this province, with particular emphasis on delineating older cratonic terranes, their fragmentation during the Mesoproterozoic, and their assembly into West Gondwana during the Pan African-Brasiliano orogeny at ca. 600 Ma. The region can be divided into three major geotectonic domains: a) Rio Piranhas-Caldas Brandão massif, with overlying Paleoproterozoic to Neoproterozoic supracrustal rocks, north of the Patos Lineament; b) the Archean to Paleoproterozoic São Francisco craton (SFC) to the south; and c) a complex domain of Paleoproterozoic to Archean basement blocks with several intervening Mesoproterozoic to Neoproterozoic fold belts in the center (south of Patos Lineament and north of SFC). The northern and central domains comprise the Borborema Province. Archean basement gneiss and Transamazonian granulite of northern SFC are exposed in the southern part of the central domain, underlying southern parts of the Sergipano fold belt. Basement in the Rio Piranhas massif appears to consist mostly of Transamazonian (2.1 to 2.2 Ga) gneissic rocks; Nd model ages (TDM) of ca. 2.6 Ga for 2.15 Ga gneisses indicate a substantial Archean component in the protoliths to these gneisses. The Caldas Brandão massif to the east yields both Transamazonian and Archean U Pb zircon and Nd (TDM) ages, indicating a complex architecture. Metasedimentary rocks of the Jucurutu Formation yield detrital zircons with original crystallization ages as young as 1.8 Ga, indicating that these rocks may be late Paleoproterozoic and correlate with other ca. 1.8 Ga cratonic supracrustal rocks in Brazil such as the Roraima Group and Espinhaço Group. Most metavolcanic and pre-Brasiliano granitic units of the Sergipano (SDS), Pajeú-Paraíba (SPP), Riacho Pontal (SRP), and Piancó-Alto Brígida (SPAB) fold belts in the central domain formed ~ 1.0 ± 0.1 Ga, based on U Pb ages of zircons. Nd model ages (TDM) for these same rocks, as well as Brasiliano granites intruded into them and large parts of the Pernambuco-Alagoas massif, are commonly 1.3-1.7 Ga, indicating that rocks of the fold belts were not wholly derived from either older (> 2.1 Ga) or juvenile (ca. 1.0 Ga) crust, but include mixtures of both components. A simple interpretation of Brasiliano granite genesis and the Nd data implies that there is no Transamazonian or Archean basement underlying large parts of these fold belts or of the Pernambuco-Alagoas massif. An exception is a belt of syenitic Brasiliano plutons (Syenitoid Line) and host gneisses between SPAB and SPP that clearly has a Transamazonian (or older) source. In addition, there are several smaller blocks of Archean to Transamazonian gneiss that can be defined within and among these fold belts. These blocks do not appear to constitute a continuous basement complex, but appear to be isolated older crustal fragments. Our data support a model in which ca. 1.0 Ga rifting was an important tectonic and crust-forming event along the northern edge of the São Francisco craton. Our data also show that significant parts of the Borborema Province are not remobilized Transamazonian to Archean crust, but that Mesoproterozoic crust is a major feature of the Province. There are several small remnants of older crust within the area dominated by Mesoproterozoic crust, suggesting that the rifting event created several small continental fragments that were later incorporated into the Brasiliano collisional orogen. We cannot at present determine if the Rio Piranhas-Caldas Brandão massifs and the older crustal blocks of the central domain were originally part of the São Francisco craton or whether some (or all) of them came from more exotic parts of the Proterozoic Earth. Finally, our data have not yet revealed any juvenile terranes of either Transamazonian or Brasiliano age. © 1995.
Resumo:
Around the southern margins of the São Francisco Craton, there is a zone of tectonic interference between the Brasília belt to the west and the younger Ribeira belt to the east. U-Pb monazite and 40Ar/39Ar cooling age determinations carried out in the area reveal the cooling histories of these belts and the timing of tectonic overprint, unraveling the final stages of Brasiliano Orogeny in SE Brazil. The U-Pb monazite data from migmatized paragneisses and late-stage pegmatites in the Socorro-Guaxupé Nappe System of the southern Brasília belt show that migmatization peaked between ca. 613±1 and 607±3 Ma. 40Ar/39Ar biotite and muscovite ages of paragneisses and schists in this area indicate that the northern high-grade core of the Nappe System (Guaxupé Domain) was uplifted and cooled through the 350°C isotherm between 599±1 and 587±1 Ma. In contrast, samples from the southern high-grade core of the Nappe System, the Socorro Domain, south of the Jacutinga shear zone, yields a broader and younger spectrum of 40Ar/39Ar biotite ages between 571±1 and 562±1 Ma, attributed to a later uplift and cooling of the crust. The cooling ages can be assigned to local resetting of the 40Ar/39Ar system during transpressive tectonic overprint due to reactivation as a result of collision of the Ribeira belt. A younger group of 40Ar/39Ar mica ages (537±1 to 521±1Ma) in schists of the Socorro Domain, are associated with transpressional structures of the Ribeira belt. Rock samples from the Jacutinga and Três Corações shear zones, yield 40Ar/39Ar biotite-muscovite ages around 520 Ma. These are typical cooling ages of the Ribeira belt, and are interpreted to mark the western limit of the Ribeira belt transpressional regime within the Brasília belt. The youngest biotite-muscovite cooling ages in schists of the Socorro Domain, between 510±2 and 491±1 Ma, mark the final cooling and exhumation of that part of the Brasília belt.
Resumo:
The leaf spot (Mycosphaerella leaf disease = MLD) caused by Teratosphaeria nubilosa has caused damage in eucalypt plantations in southern and southeastern Brazil. The need to assess the disease in the field to evaluate of this damage, efficiency control, evaluation of germplasm induces to the necessity of having a visual scale for evaluation of disease. The objective was to develop a diagrammatic scale for young leaves and one for adult leaves of Eucalyptus globules for MLD. To do so, the leaves collected in the field were scanned for image analysis. The damaged area, the healthy leaf area and the external area of the same scale RGB (Red, Green, Blue) were determined. Subsequently, it was determinate the levels of severity depending on the sample distribution with seven levels for young leaves and six for adult leaves. For the visual acuity test and validate the scale, the leaves were evaluated for severity, with and without scale. With this proposed scales, the assessors showed good accuracy both for young and adult leaves with R2=0,98 and R2=0,80, respectively. The importance of the development of diagrammatic scales for assessing MLD in eucalyptus must to the fact that allows quantification of the symptoms accurately and precisely.
Resumo:
Pós-graduação em Genética - IBILCE
Resumo:
Pós-graduação em Geologia Regional - IGCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)