7 resultados para Sound absorbing materials
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We propose a mathematical model for the movement in absorbing materials of photorefractive holograms under feedback constraints. We use this model to analyze the speed of a fringe-locked running hologram in photorefractive sillenite crystals that usually exhibit a strong absorption effect. Fringe-locked experiments permit us to compute the quantum efficiency for the photogeneration of charge carriers in photorefractive crystals if the effect of bulk absorption and the effective value of the externally applied field are adequately taken into consideration. A Bi12TiO20 sample was measured with the 532-nm laser wavelength, and a quantum efficiency of φ = 0.37 was obtained. Disregarding absorption leads to large errors in φ. © 2000 Optical Society of America.
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background and Objectives. The adhesion of dental materials is important for the success of treatment. The aim of this study is to evaluate the bond strength of a composite resin applied with a self-etching adhesive system in different dentins after irradiation with Er:YAG and Nd:YAG lasers, observing their morphologic pattern using Scanning Electronic Microscopy (SEM). Materials and Methods. The buccal surface of 72 bovine incisors was worn until exposure of medium depth dentin. The specimens were divided into three groups; GI: normal, GII: demineralized and GIII: hypermineralized dentin. These were also divided into two subgroups; A-irradiated for 30 s with Er:YAG laser in noncontact mode at 40 mJ and 6 Hz and B- irradiated for 30 s with Nd:YAG laser in contact mode at 60 mJ and 10 Hz. The adhesive system Clearfil SE. Bond (Kuraray) and composite resin Tetric Ceram (Vivadent) were applied on the irradiated area by the incremental technique. After storage for 24 h in distilled water at 37 degrees C, the specimens were submitted to the shear strength test in a universal testing machine (EMIC) at a crosshead speed of 1.0 mm/min. Other specimens were made to be analyzed by SEM. Results. The results were statistically analyzed by Analysis of Variance and the Tukey test. Regardless of the type of dentin, the bond strength of specimens irradiated with the Nd:YAG laser (8,94 +/- 2,07) was higher compared to specimens irradiated with the Er:YAG laser (7,03 +/- 2,47); the highest bond strength was obtained for the group of hypermineralized dentin irradiated with the Nd:YAG laser. The SEM analysis showed that the Er:YAG laser caused opening of tubules and the Nd:YAG laser produced areas of fusion as well as regions of opening of dentinal tubules. Conclusions. The dentin showed different morphological patterns and the laser promote alterations on their surfaces, influencing the bond strength of the composite resin. (C) 2010 Laser Institute of America.
Resumo:
Purpose : To compare the radiopacity of 13 restorative materials, (a conventional glass-ionomer cement, three resin-modified glass-ionomer cements, six polyacid-modified resin-based composites, and three resin-based composites) to sound tooth structure. Materials and Methods: 315 specimens were made of the restorative materials (n= 21), of 2 min height and 4.1 mm diameter. Radiographs were taken of the specimens, together with the tooth structure sample and an aluminum step wedge. The radiopacity values of each specimen were taken using a transmission densitometer. Results: ANOVA and Tukey's test (95% level of confidence) revealed that, except for a resin-based composite, a polyacid-modified resin-based composite, a resin-modified glass-ionomer cement and the conventional glass-ionomer cement, all the evaluated restorative materials were more radiopaque than the tooth structure.
Resumo:
Background: Since only a few data have been published concerning the effects of resinous dental materials on the pulp-dentin complex, the aim of this study was to evaluate the biocompatibility of resin-based materials applied as liners in deep cavities prepared in duman teeth. Methods: After preparing class V cavities, the following dental materials were applied on the axial walls: group 1, Vitrebond™ (VIT; 3M ESPE); group 2, Ultra-Blend® Plus™ (UBP; Untradent); and group 3, Clearfil™ SE Bond (CSEB; Kuraray). In group 4 (control), the hard-setting calcium hydroxide cement Dycal (CH; Caulk/Dentsply) was used. The teeth extracted at 7 days or between 30 and 85 days after the clinical procedures were processed for histological evaluation. Results: For all the experimental and control groups, most of specimens exhibited no pulpal response or slight inflammatory reaction associated with slight tissue disorganization at 7-day period. Moderate inflammatory pulpal response occurred only in one tooth (RDT = 262 μm) of group 3 in which transdentinal diffusion of resin components was observed. Conclusion: The resin-based dental cements VIT and UBP as well as the bonding agent CSEB presented acceptable biocompatibility when applied in deep cavities prepared in sound human teeth. © 2006 Wiley Periodicals, Inc.