3 resultados para Soil proximal sensing
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
In the study of physical, chemical, and mineralogical data related to the weathering of soils and the quantification of their properties, remote sensing constitutes an important technique that, in addition to conventional analyses, can contribute to soil survey. The objectives of this research were to characterize and differentiate soils developed from basaltic rocks that occur in the Parana state, Brazil and to quantify soil properties based on their spectral reflectance. These observations were used to verify the relationship between the soils and reflectance with regard to weathering, organic matter (OM), and forms of Fe. From the least to the most weathered soil, we used a Typic Argiudoll (Reddish Brunizem), Rhodudalf (Terra Roxa Estruturada), and Rhodic Hapludox (Very Dark Red Latosol). The spectral reflectances between 400 and 2500 nm were obtained in the laboratory from soil samples collected at two depth increments, 0- to 20- and 40- to 60-cm, using an Infra Red Intelligent Spectroradiometer (IRIS). Correlation, regression, and discriminant estimates were used in analyzing the soil and spectral data. Results of this study indicated that soils could be separated at the soil-type level based on reflectance intensity in various absorption bands. Soil collected in the 40- to 60-cm depth appeared to have higher reflectance intensities than those from the 0- to 20-cm depth. Removal of OM from soil samples promoted higher reflectance intensity in the entire spectrum. Amorphous and crystalline Fe influenced reflectance differently. Weathering of basaltic soils was correlated with alterations in the reflectance intensities and absorption features of the spectral curves. Multivariate analysis demonstrated that this technique was efficient in the estimation of clay, silt, kaolinite, crystalline Fe, amorphous Fe, and Mg through the use of reflected energy of the soils.
Resumo:
Soil-transmitted helminths (STHs) form one of the most important groups of infectious agents and are the cause of serious global health problems. The most important STHs are roundworms (Ascaris lumbricoides), whipworms (Trichuris trichiura) and hookworms (Necator americanus or Ancylostoma duodenale); on a global level, more than a billion people have been infected by at least one species of this group of pathogens. This review explores the general concepts of transmission dynamics and the environment and intensity of infection and morbidity of STHs. The global strategy for the control of soil-transmitted helminthiasis is based on (i) regular anthelminthic treatment, (ii) health education, (iii) sanitation and personal hygiene and (iv) other means of prevention with vaccines and remote sensoring. The reasons for the development of a control strategy based on population intervention rather than on individual treatment are discussed, as well as the costs of the prevention of STHs, although these cannot always be calculated because interventions in health education are difficult to measure. An efficient sanitation infrastructure can reduce the morbidity of STHs and eliminates the underlying cause of most poverty-related diseases and thus supports the economic development of a country.
Resumo:
The best irrigation management depends on accurate estimation of reference evapotranspiration (ET0) and then selection of the appropriate crop coefficient for each phenological stage. However, the evaluation of water productivity on a large scale can be done by using actual evapotranspiration (ETa), determined by coupling agrometeorological and remote sensing data. This paper describes methodologies used for estimating ETa for 20 centerpivots using three different approaches: the traditional FAO crop coefficient (K-c) method and two remote sensing algorithms, one called SEBAL and other named TEIXEIRA. The methods were applied to one Landsat 5 Thematic Mapper image acquired in July 2010 over the Northwest portion of the Sao Paulo State, Brazil. The corn, bean and sugar cane crops are grown under center pivot sprinkler irrigation. ET0 was calculated by the Penman-Monteith method with data from one automated weather station close to the study site. The results showed that for the crops at effective full cover, SEBAL and TEIXEIRA's methods agreed well comparing with the traditional method. However, both remote sensing methods overestimated ETa according to the degree of exposed soil, with the TEIXEIRA method presenting closer ETa values with those resulted from the traditional FAO K-c method. This study showed that remote sensing algorithms can be useful tools for monitoring and establishing realistic K-c values to further determine ETa on a large scale. However, several images during the growing seasons must be used to establish the necessary adjustments to the traditional FAO crop coefficient method.