5 resultados para Small RNAs

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Axillary bud outgrowth determines shoot architecture and is under the control of endogenous hormones and a fine-tuned gene-expression network, which probably includes small RNAs (sRNAs). Although it is well known that sRNAs act broadly in plant development, our understanding about their roles in vegetative bud outgrowth remains limited. Moreover, the expression profiles of microRNAs (miRNAs) and their targets within axillary buds are largely unknown. Here, we employed sRNA next-generation sequencing as well as computational and gene-expression analysis to identify and quantify sRNAs and their targets in vegetative axillary buds of the biofuel crop sugarcane (Saccharum spp.). Computational analysis allowed the identification of 26 conserved miRNA families and two putative novel miRNAs, as well as a number of trans-acting small interfering RNAs. sRNAs associated with transposable elements and protein-encoding genes were similarly represented in both inactive and developing bud libraries. Conversely, sequencing and quantitative reverse transcription-PCR results revealed that specific miRNAs were differentially expressed in developing buds, and some correlated negatively with the expression of their targets at specific stages of axillary bud development. For instance, the expression patterns of miR159 and its target GAMYB suggested that they may play roles in regulating abscisic acid-signalling pathways during sugarcane bud outgrowth. Our work reveals, for the first time, differences in the composition and expression profiles of diverse sRNAs and targets between inactive and developing vegetative buds that, together with the endogenous balance of specific hormones, may be important in regulating axillary bud outgrowth. © 2013 © The Author(2) [2013].

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Small non coding RNAs emerged as important characters in several biology aspects. Among then, the most studied are microRNAs (miRNAs) and short interfering RNAs (siRNAs), that regulate their target gene post-transcriptionally in plants, animals and RNAi pathway intermediates, respectively. Both of classes have similar biogenesis being processed by Dicer enzymes and subsequent association with Argonaute enzymes. In plants, miRNAs and siRNAs have important functions in development, genome integrity and biotic and abiotic stress responses. The advances in high-throughtput sequencing and in silico analisys provide the uncover of new small non coding RNAs classes, many of them with unknown functions and biogenesis. tRNA derived small RNAs (tRFs) are a small non coding RNA class, that have as precursor a tRNA molecule. These were uncovers in the last decade in many organisms and, recently, in plants. Recent works detected tRFs from different sizes, with different source portions of the mature tRNA molecule (5’ end; 3’ end, anti-codon loop) and some from the tRNA precursor (pre-tRNA), suggesting that may be a novel class of small RNA and not random degradation products. Works in humans showed that some tRFs are processed by the Dicer enzymes, have association with the Argonaute enzymes and cell differentiation, tumor appearance and gene silencing related functions. Works in Arabidopsis and pumpkin (Cucurbita maxima) showed, respectively, that the tRFs have nutritional stress response possible functions and long distance signaling function between source and drain tissues, and may affect the translation. The tRFs biogenesis in plants are, until now an unknown, absence information about it in the literature and its possible biological functions are few studied yet, making then interesting target for studies among the small non coding RNAs in plants

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Small nuclear RNAs (snRNAs) are important factors in the functioning of eukaryotic cells that form several small complexes with proteins; these ribonucleoprotein particles (U snRNPs) have an essential role in the pre-mRNA processing, particularly in splicing, catalyzed by spliceosomes, large RNA-protein complexes composed of various snRNPs. Even though they are well defined in mammals, snRNPs are still not totally characterized in certain trypanosomatids as Trypanosoma cruzi. For this reason we subjected snRNAs (U2, U4, U5, and U6) from T. cruzi epimastigotes to molecular characterization by polymerase chain reaction (PCR) and reverse transcription-PCR. These amplified sequences were cloned, sequenced, and compared with those other of trypanosomatids. Among these snRNAs, U5 was less conserved and U6 the most conserved. Their respective secondary structures were predicted and compared with known T. brucei structures. In addition, the copy number of each snRNA in the T. cruzi genome was characterized by Southern blotting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Genética) - IBB

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)