5 resultados para Slope Mass Rating
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Background: Figure rating scales were developed as a tool to determine body dissatisfaction in women, men, and children. However, it lacks in the literature the validation of the scale for body silhouettes previously adapted. We aimed to obtain evidence for construct validity of a figure rating scale for Brazilian adolescents.Methods: The study was carried out with adolescent students attending three public schools in an urban region of the municipality of Florianopolis in the State of Santa Catarina (SC). The sample comprised 232 10-19-year-old students, 106 of whom are boys and 126 girls, from the 5th series (i.e. year) of Primary School to the 3rd year of Secondary School. Data-gathering involved the application of an instrument containing 8 body figure drawings representing a range of children's and adolescents' body shapes, ranging from very slim (contour 1) to obese (contour 8). Weights and heights were also collected, and body mass index (BMI) was calculated later. BMI was analyzed as a continuous variable, using z-scores, and as a dichotomous categorical variable, representing a diagnosis of nutritional status (normal and overweight including obesity).Results: Results showed that both males and females with larger BMI z-scores chose larger body contours. Girls with higher BMI z-scores also show higher values of body image dissatisfaction.Conclusion: We provided the first evidence of validity for a figure rating scale for Brazilian adolescents.
Resumo:
The aims of this study were (a) to assess the ability of the rating of perceived exertion (RPE) to predict performance (i.e. number of vertical jumps performed to a fixed jump height) of an intermittent vertical jump exercise, and (b) to determine the ability of RPE to describe the physiological demand of such exercise. Eight healthy men performed intermittent vertical jumps with rest periods of 4, 5, and 6s until fatigue. Heart rate and RPE were recorded every five jumps throughout the sessions. The number of vertical jumps performed was also recorded. Random coefficient growth curve analysis identified relationships between the number of vertical jumps and both RPE and heart rate for which there were similar slopes. In addition, there were no differences between individual slopes and the mean slope for either RPE or heart rate. Moreover, RPE and number of jumps were highly correlated throughout all sessions (r=0.97-0.99; P0.001), as were RPE and heart rate (r=0.93-0.97; P0.001). The findings suggest that RPE can both predict the performance of intermittent vertical jump exercise and describe the physiological demands of such exercise.
Resumo:
Assuming that neutrinos are Majorana particles, in a three-generation framework, current and future neutrino oscillation experiments can determine six out of the nine parameters which fully describe the structure of the neutrino mass matrix. We try to clarify the interplay among the remaining parameters, the absolute neutrino mass scale and two CP violating Majorana phases, and how they can be accessed by future neutrinoless double beta (0vυββ) decay experiments, for the normal as well as for the inverted order of the neutrino mass spectrum. Assuming the oscillation parameters to be in the range presently allowed by atmospheric, solar, reactor, and accelerator neutrino experiments, we quantitatively estimate the bounds on m 0, the lightest neutrino mass, that can be inferred if the next generation 0υββ decay experiments can probe the effective Majorana mass (m ee) down to ∼1 meV. In this context we conclude that in the case that neutrinos are Majorana particles, (a) if m 0≳300 meV, i.e., within the range directly attainable by future laboratory experiments as well as astrophysical observations, then m ee≳30 meV must be observed, (b) if m 0 ≤ 300 meV, results from future 0υββ decay experiments combined with stringent bounds on the neutrino oscillation parameters, especially the solar ones, will place much stronger limits on the allowed values of m 0 than these direct experiments. For instance, if a positive signal is observed around m ee = 10 meV, we estimate 3≲m 0/meV≲65 at 95% C.L.; on the other hand, if no signal is observed down to m ee = 10 meV, then m 0≲55 meV at 95% C.L.
Resumo:
We compute the tree level cross section for gluon-gluon elastic scattering taking into account a dynamical gluon mass, and show that this mass scale is a natural regulator for this subprocess cross section. Using an eikonal approach in order to examine the relationship between this gluon-gluon scattering and the elastic pp and (p) over barp channels, we found that the dynamical gluon mass is of the same order of magnitude as the ad hoc infrared mass scale m(0) underlying eikonalized QCD-inspired models. We argue that this correspondence is not an accidental result, and that this dynamical scale indeed represents the onset of nonperturbative contributions to the elastic hadron-hadron scattering. We apply the eikonal model with a dynamical infrared mass scale to obtain predictions for sigma(tot)(pp,(p) over barp), rho(pp,(p) over barp), slope B-pp,B-(p) over barp, and differential elastic scattering cross section d sigma((p) over barp)/dt at Tevatron and CERN-LHC energies.
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE