3 resultados para Sintered porous body

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this research report, a sintering process of porous ceramic materials based on Al2O3 was employed using a method where a cation precursor solution is embedded in an organic fibrous cotton matrix. For porous green bodies, the precursor solution and cotton were annealed at temperatures in the range of 100-1600°C using scanning electron microscopy (SEM) and thermogravimetric (TG) analysis to obtain a porous body formation and disposal process containing organic fibers and precursor solution. In a structure consisting of open pores and interconnected nanometric grains, despite the low porosity of around 40% (calculated geometrically), nitrogen physisorption determined a specific surface area of 14m2/g, which shows much sintering of porous bodies. Energy dispersive X-ray (EDX) and X-ray diffraction (XRD) analytical methods revealed a predominant amount of α-Al2O3 in the sintered samples. Thermal properties of the sintered Al2O3 fibers were obtained by using the Laser Flash which resulted in the lower thermal conductivity obtained by α-Al2O3 and therefore improved its potential use as an insulating material. © 2012 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Co3O4 can be used as electrocatalyst for oxygen evolution reaction. The macro and microstructure of the oxide, obtained by compacting and sintering lithium-doped Co3O4 powder in atmosphere of dry air and in conditions of controlled temperature and time was analyzed by metallographic techniques. The porous material was characterized by XRD, SEM and EDS combined techniques. For working temperatures up to 1200°C, the pellet was consituted of particles with varying sizes over a wide range of particle size and, at higher temperatures CoO is formed and polymorphic transformation was observed. The materials were also characterized electrochemically in alkaline media by open circuit potential and potentiodynamic I/E measurements. The results were compared to those previously prepared by others by thermal deposition.