113 resultados para Silver additions

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of silver additions on the Cu-13 wt. pot. Al alloy hardness was studied for additions in the range 0 to 16 wt. pot Ag. The results indicated a pronounced hardness increase with the silver content and an influence of the quenching temperature. Data obtained from scanning electron microscopy indicated that the formation of silver-rich precipitates, wich change with the quenching temperature, seems to produce the changes on alloys hardness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of additions of 2, 4, 6, 8, 10 and 12 mass% Ag on the thermal behavior of the Cu-8 mass% Al alloy was studied using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffractometry (XRD). The results indicate that the presence of silver introduces new thermal events, due to the formation of a silver-rich phase and, for additions of 10 and 12 mass% Ag, it is possible to verify the formation of the gamma (1) phase (Cu9Al4) and the metastable transitions which are only observed in alloys with a minimum of 9 mass% Al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of silver additions on the structure and phase transformation of the Cu-13 wt % Al alloy was studied by differential thermal analysis, X-ray diffraction, scanning electron microscopy and energy dispersive analysis of X-rays. The results indicate that the presence of silver modifies the phase-stability field, the transition temperature and the structure of the alloy. These effects are more pronounced for silver concentrations up to 8 wt %.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of additions of 1.3, 2.5, 3.8, 5.1, and 6.3 at.% Ag on the aging behavior of the Cu-10.4at.%Al alloy was studied using microhardness measurements, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. The results indicated that with silver additions it is possible to obtain a response to age hardening, and that for large aging times there is a decrease in the alloy hardness, with a process that leads to Ag and Al segregation. © 1998 Elsevier Science S.A.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermal behavior of alpha-(Cu-Al-Ag) alloys, i.e. alloys with composition less than about 8.5 mass% Al, was studied using differential scanning calorimetry (DSC), differential thermal analysis (DTA), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffractometry (XRD). The results indicated that the presence of silver introduces new thermal events ascribed to the formation of a silver-rich phase and, after addition higher amounts than 8 mass% Ag to the Cu-8 mass% Al alloy it is possible to observe the formation of the gamma(1) phase (Al4Cu9), which is only observed in alloys containing minimum of 9 mass% Al. These results may be attributed to some Ag characteristics and its interaction with Cu and Al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of additions of 2, 4, 6, 8, 10 and 12 wt.% Ag in the isothermal aging kinetics of the Cu-8 wt.% Al alloy was studied using microhardness measurements, differential scanning calorimetry, optical and scanning electron microscopy and X-ray diffractometry. The results indicate that the presence of silver is responsible for the shift of the equilibrium concentration to higher Al contents, allowing the formation of the gamma(1) phase (Al4Cu9) in this alloy. For Ag additions up to 6% the dominant kinetic process is Ag precipitation and for additions from 8 to 12% Ag the nucleation of the perlitic phase dominates. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Ag-rich phase precipitation in the Cu-9 mass% Al was studied using differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results indicated that Ag additions did not interfere on the metastable transitions sequence of the Cu-mass% Al alloy but Ag precipitation disturbs the beta phase formation reaction and the martensitic phase decomposition reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of the kinetics of martensitic phase decomposition in the Cu-10wt.%Al alloy with Ag additions showed that the presence of Ag retarded the eutectoid decomposition reaction and enhanced martensite stabilization. This stabilization effect was attributed to Ag atoms redistribution as structure defects, increase in the numbers of Cu-Al pairs due to Ag-Al interaction and the Al atoms redistribution around one Cu atom at the sub-lattice of the martensitic crystal. © 2008 Trans Tech Publications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)