184 resultados para Shipping process on consignment
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The effect of 2-mercaptobenzothiazole (MBT) on the corrosion of copper in ethanol-water mixture with 0.01 mol dm(-3) HClO4 was investigated by linear sweep voltammetry and surface enhanced Raman scattering spectroscopy. The linear sweep voltammetry for the copper electrode in the presence of MBT shows one anodic process associated with the oxidation of MBT, which leads to the formation of a film on the electrode. This film inhibits the anodic copper dissolution and cathodic hydrogen evolution reaction. SERS studies indicated that MBT oxidizes and forms polymeric complexes involving copper ions and the ionized form of thiol. (C) 1997 Elsevier B.V. Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
1. We investigated the effect of a persistent carrageenin- or nystatin-induced inflammatory reaction on heterotopic ossification produced by the subcutaneous implant of a demineralized bone matrix in female Swiss mice (25 to 35 g).2. Subcutaneous carrageenin injection (0.3 ml of a 2% solution in saline) into mice induced an inflammatory reaction characterized by a mature granuloma predominantly of macrophages containing particles of the irritant in their cytoplasm and which remained unchanged until the end of the experiment (40th day).3. Subcutaneous nystatin inoculation (30,000 IU in 0.3 ml saline) induced an inflammatory reaction consisting initially of macrophages (4th day) but later turning into an epithelioid granuloma (7th day) consisting predominantly of epithelioid cells and which was present up to the 2 lst day when it was gradually replaced by adipocytes up to the 30th day.4. An intramuscular implant of demineralized bone matrix (DBM, approximately 10 mg) induced the formation of cartilage and bone tissue and of hemopoietic bone marrow (heterotopic ossification) in 100% of the control animals (N = 5). An intramuscular DBM implant in animals that received carrageenin (N = 19) or nystatin (N = 21) induced heterotopic ossification in 100 and 57% (P<0.01)) of the animals, respectively.5. The response to a dorsal subcutaneous DBM implant was essentially negative in control animals (N = 5), whereas implants performed near the site injected with carrageenin (N = 28) or nystatin (N = 31) produced a response in 71 (P <0.01) and 36 % (P<0.01) of the animals, respectively. A DBM implant into the contralateral (control) dorsal subcutaneous tissue of the same animals that received carrageenin (N = 25) or nystatin (N = 29) resulted in heterotopic ossification in 64 (P<0.01) and 7% of the animals, respectively.6. The results suggest that the macrophages present in the mature granuloma induced by carrageenin somehow favored the development of metaplastic plates after subcutaneous DBM implant and that this effect may be systemic since the same response was observed in contralateral subcutaneous tissue.
Resumo:
An MNDO study has been carried out to analyze the decomposition process of the ethanol molecule on a SnO2 surface. A (SnO2)(7) (110) model has been selected to represent the surface. The decomposition process has been monitored by selection of a hydrogen-alpha-carbon distance of the ethanol molecule as reaction coordinate, This minimum energy pro file shows a maximum of 186 kJ mol(-1), and in the transition state there is a transfer of hydrogen-alpha-carbon to the SnO2 surface. There is also the interaction between the alcohol hydroxyls and the two oxygens of the oxide.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Density functional calculation at B3LYP level was employed to study the surface oxygen vacancies and the doping process of Co, Cu and Zn on SnO2 (110) surface models. Large clusters, based on (SnO2)(15) models, were selected to simulate the oxidized (Sn15O30), half-reduced (Sn15O29) and the reduced (Sn15O28) surfaces. The doping process was considered on the reduced surfaces: Sn13Co2O28, Sn13Cu2O28 and Sn13Zn2O28. The results are analyzed and discussed based on a calculation of the energy levels along the bulk band gap region, determined by a projection of the monoelectron level structure on to the atomic basis set and by the density of states. This procedure enables one to distinguish the states coming from the bulk, the oxygen vacancies and the doping process, on passing from an oxidized to a reduced surface, missing bridge oxygen atoms generate electronic levels along the band gap region, associated with 5s/5p of four-/five-fold Sn and 2p of in-plane O centers located on the exposed surface, which is in agreement with previous theoretical and experimental investigations. The formation energy of one and two oxygen vacancies is 3.0 and 3.9 eV, respectively. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Shot peening is a surface process widely used to improve the fatigue strength of materials, through compressive residual stresses induced in their surface layers. Considering mechanical components for high responsible applications, wear and corrosion control is currently accomplished by the use of coated materials.In the case of chrome plating or hard anodizing, lower fatigue strength in comparison to uncoated parts are associated to high residual tensile stresses and microcracks density. Under constant or variable amplitude loading microcracks will propagate and cross the interface coating substrate without impediment.The aim of the present study is to analyze the influence of WC-10Ni coating applied by HVOF process on the axial fatigue strength of AISI 4340 steel. The shot peening effect on the fatigue performance of coated AISI 4340 steel was also evaluated. The fractured fatigue specimens were investigated using a scanning electron microscope in order to obtain information about the crack initiation points. (C) 2010 Published by Elsevier Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work the technique of X-ray reflectometry was applied to study zirconiumsulfate films deposited by sol-gel dip-coating process on a borosilicate glass surface. The influence of withdrawal speed and temperature of thermal treatment on the film structure are analyzed. The thermal evolution of the density and thickness of the film was compared with these properties measured for a monolithic xerogel by helium picnometry and thermomechanical analysis. The fitting of experimental curves by classical reflectivity model showed the presence of an additional layer at the top surface of the coating. Layer thickness increases with increase of withdrawal speed in agreement with the Landau-Levich model. The apparent and real densities are similar for coatings fired below 400 degrees C, which shows that the films are free of pores. The shrinkage during firing is anisotropic, occurring essentially perpendicular to the coating surface. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Indium doped ZnO films were deposited by the pyrosol process on glass substrates at different temperatures from solutions containing In/Zn molar ratios up to 10%. The nanostructure of the films was investigated using grazing-incidence small angle X-ray scattering (GISAXS). The mass density was determined by X-ray reflectivity and the composition by X-ray photoelectron spectroscopy. The GISAXS measurements revealed an anisotropic pattern for films deposited at 573 and 623 K and a isotropic one for those deposited at higher temperatures. The anisotropic patterns indicate the presence of elongated nanopores with their long axes perpendicular to the film surface. In contrast, the isotropic nature of GISAXS patterns of films grown at high temperatures (673 and 723 K) suggests the presence of spherical voids. The pore size distribution function determined from the isotropic patterns indicates a multimodal size distribution. on the other hand, the measured mass density of the doped films with isotropic nanotexture is higher than that of the anisotropic films while the electric resistivity is significantly lower. This is in agreement with the detected strong reduction of the void density and specific surface area at approximately constant pore size.
Resumo:
A joint experimental and theoretical study has been carried out to rationalize for the first time the photoluminescence (PL) properties of disordered CaWO4 (CWO) thin films. From the experimental side, thin films of CWO have been synthesized following a soft chemical processing, their structure has been confirmed by X-ray diffraction data and corresponding PL properties have been measured using the 488 nm line of an argon ion laser. Although we observe PL at room temperature for the crystalline thin films, the structurally disordered samples present much more intense emission. From the theoretical side, first principles quantum mechanical calculations, based on density functional theory at B3LYP level, have been employed to study the electronic structure of a crystalline (CWO-c) and asymmetric (CWO-a) periodic model. Electronic properties are analyzed in the light of the experimental results and their relevance in relation to the PL behavior of CWO is discussed. The symmetry breaking process on going from CWO-c to CWO-a creates localized electronic levels above the valence band and a negative charge transfer process takes place from threefold, WO3, to fourfold, WO4,. tungsten coordinations. The correlation of both effects seems to be responsible for the PL of amorphous CWO. (c) 2005 Elsevier B.V. All rights reserved.