183 resultados para Shewhart chart
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper we propose the Double Sampling X̄ control chart for monitoring processes in which the observations follow a first order autoregressive model. We consider sampling intervals that are sufficiently long to meet the rational subgroup concept. The Double Sampling X̄ chart is substantially more efficient than the Shewhart chart and the Variable Sample Size chart. To study the properties of these charts we derived closed-form expressions for the average run length (ARL) taking into account the within-subgroup correlation. Numerical results show that this correlation has a significant impact on the chart properties.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Traditionally, an (X) over bar chart is used to control the process mean and an R chart is used to control the process variance. However, these charts are not sensitive to small changes in the process parameters. The adaptive ($) over bar and R charts might be considered if the aim is to detect small disturbances. Due to the statistical character of the joint (X) over bar and R charts with fixed or adaptive parameters, they are not reliable in identifing the nature of the disturbance, whether it is one that shifts the process mean, increases the process variance, or leads to a combination of both effects. In practice, the speed with which the control charts detect process changes may be more important than their ability in identifying the nature of the change. Under these circumstances, it seems to be advantageous to consider a single chart, based on only one statistic, to simultaneously monitor the process mean and variance. In this paper, we propose the adaptive non-central chi-square statistic chart. This new chart is more effective than the adaptive (X) over bar and R charts in detecting disturbances that shift the process mean, increase the process variance, or lead to a combination of both effects. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Throughout this article, it is assumed that the no-central chi-square chart with two stage samplings (TSS Chisquare chart) is employed to monitor a process where the observations from the quality characteristic of interest X are independent and identically normally distributed with mean μ and variance σ2. The process is considered to start with the mean and the variance on target (μ = μ0; σ2 = σ0 2), but at some random time in the future an assignable cause shifts the mean from μ0 to μ1 = μ0 ± δσ0, δ >0 and/or increases the variance from σ0 2 to σ1 2 = γ2σ0 2, γ > 1. Before the assignable cause occurrence, the process is considered to be in a state of statistical control (defined by the in-control state). Similar to the Shewhart charts, samples of size n 0+ 1 are taken from the process at regular time intervals. The samplings are performed in two stages. At the first stage, the first item of the i-th sample is inspected. If its X value, say Xil, is close to the target value (|Xil-μ0|< w0σ 0, w0>0), then the sampling is interrupted. Otherwise, at the second stage, the remaining n0 items are inspected and the following statistic is computed. Wt = Σj=2n 0+1(Xij - μ0 + ξiσ 0)2 i = 1,2 Let d be a positive constant then ξ, =d if Xil > 0 ; otherwise ξi =-d. A signal is given at sample i if |Xil-μ0| > w0σ 0 and W1 > knia:tl, where kChi is the factor used in determining the upper control limit for the non-central chi-square chart. If devices such as go and no-go gauges can be considered, then measurements are not required except when the sampling goes to the second stage. Let P be the probability of deciding that the process is in control and P 1, i=1,2, be the probability of deciding that the process is in control at stage / of the sampling procedure. Thus P = P1 + P 2 - P1P2, P1 = Pr[μ0 - w0σ0 ≤ X ≤ μ0+ w 0σ0] P2=Pr[W ≤ kChi σ0 2], (3) During the in-control period, W / σ0 2 is distributed as a non-central chi-square distribution with n0 degrees of freedom and a non-centrality parameter λ0 = n0d2, i.e. W / σ0 2 - xn0 22 (λ0) During the out-of-control period, W / σ1 2 is distributed as a non-central chi-square distribution with n0 degrees of freedom and a non-centrality parameter λ1 = n0(δ + ξ)2 / γ2 The effectiveness of a control chart in detecting a process change can be measured by the average run length (ARL), which is the speed with which a control chart detects process shifts. The ARL for the proposed chart is easily determined because in this case, the number of samples before a signal is a geometrically distributed random variable with parameter 1-P, that is, ARL = I /(1-P). It is shown that the performance of the proposed chart is better than the joint X̄ and R charts, Furthermore, if the TSS Chi-square chart is used for monitoring diameters, volumes, weights, etc., then appropriate devices, such as go-no-go gauges can be used to decide if the sampling should go to the second stage or not. When the process is stable, and the joint X̄ and R charts are in use, the monitoring becomes monotonous because rarely an X̄ or R value fall outside the control limits. The natural consequence is the user to pay less and less attention to the steps required to obtain the X̄ and R value. In some cases, this lack of attention can result in serious mistakes. The TSS Chi-square chart has the advantage that most of the samplings are interrupted, consequently, most of the time the user will be working with attributes. Our experience shows that the inspection of one item by attribute is much less monotonous than measuring four or five items at each sampling.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Esta tese apresenta, de forma compacta, os trabalhos mais importantes do autor, que são frutos de uma pesquisa de vinte anos sobre gráficos de Shewhart. O autor estudou os modelos que descrevem o tipo e o instante de ocorrência das causas especiais, propôs novos esquemas de amostragens e estatísticas de monitoramento. Mais recentemente, vem avaliando a capacidade dos gráficos de controle em sinalizar causas especiais quando as observações são autocorrelacionadas e propondo novas estatísticas para o monitoramento de processos mutivariados.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
A new chart based on sample variances for monitoring the covariance matrix of multivariate processes
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this article we consider a control chart based on the sample variances of two quality characteristics. The points plotted on the chart correspond to the maximum value of these two statistics. The main reason to consider the proposed chart instead of the generalized variance |S| chart is its better diagnostic feature, that is, with the new chart it is easier to relate an out-of-control signal to the variables whose parameters have moved away from their in-control values. We study the control chart efficiency considering different shifts in the covariance matrix. In this way, we obtain the average run length (ARL) that measures the effectiveness of a control chart in detecting process shifts. The proposed chart always detects process disturbances faster than the generalized variance |S| chart. The same is observed when the size of the samples is variable, except in a few cases in which the size of the samples switches between small size and very large size.