129 resultados para Shear strengths

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plasma processing of carbon fibers (CFs) is aimed to provide better contact and adhesion between individual plies without decrease in the CF mechanical resistance. This paper deals with surface modification of CFs by an atmospheric pressure dielectric barrier discharge (DBD) for enhancing the adhesion between the CF and the polymeric matrix. The scanning electron microscopy of the treated samples revealed many small particles distributed over entire surface of the fiber. These particles are product of the fiber surface etching during the DBD treatment that removes the epoxy layer covering as-received samples. The alteration of the CF surface morphology was also confirmed by the Atomic force microscopy (AFM), which indicated that the CF roughness increased as a result of the plasma treatment. The analysis of the surface chemical composition provided by X-ray photoelectron spectroscopy showed that oxygen and nitrogen atoms are incorporated onto the surface. The polar oxygen groups formed on the surface lead to the increasing of the CF surface energy. The results of interlaminar shear strength test (short beam) of CFs/polypropylene composites demonstrated a greater shear resistance of the composites made with CFs treated by DBD than the one with untreated fibers. Both the increase in surface roughness and the surface oxidation contribute for the enhancement of CF adhesion properties. © 2012 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to investigate how environmental degradation affects the mechanical and thermal performance of polyetherimide/carbon fiber laminates, in this work different weathering were conducted. Additionally, dynamic mechanical analysis, interlaminar shear strength tests and non-destructive inspections were performed on this composite before and after being submitted to hygrothermal, UV radiation and thermal shock weathering. According to our results, hygrothermally aged samples had their glass transition temperature and elastic and storage moduli reduced by plasticization effect. Photooxidation, due to UV radiation exposure, occurred only on the surface of the laminates. Thermal shock induced a reversible stress on the composite's interface region. The results revealed that the mechanical behavior can vary during weather exposure but since this variation is only subtle, this thermoplastic laminate can be considered for high-performance applications, such as aerospace. © The Author(s) 2013.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Statement of problem. The success of metal-ceramic restorations is influenced by the compatibility between base metal alloys and porcelains. Although porcelain manufacturers recommend their own metal systems as the most compatible for fabricating metal-ceramic prostheses, a number of alloys have been used.Purpose. This study evaluated the shear bond strength between a porcelain system and 4 alternative alloys.Material and methods. Two Ni-Cr alloys: 4 ALL and Wiron 99, and 2 Co-Cr alloys: IPS d.SIGN 20 and Argeloy NP were selected for this study. The porcelain (IPS d.Sign porcelain system) portion of the cylindrical inetal-ceramic specimens was 4 mm thick and 4 mm high; the metal portion was machined to 4 x 4 mm, with a base that was 5 nun thick and 1 mm high. Forty-four specimens were prepared (n=11). Ten specimens from each group were subjected to a shear load oil a universal testing machine using a 1 min/min crosshead speed. One specimen from each group was observed with a scanning electron microscope. Stress at failure (MPa) was determined. The data were analyzed with a 1-way analysis of variance (alpha=.05).Results. The groups, all including IPS d.Sign porcelain, presented the following mean bond strengths (+/-SD) in MPa: 4 ALL, 54.0 +/- 20.0; Wiron, 63.0 +/- 13.5; IPS d.SIGN 20, 71.7 +/- 19.2; Argeloy NP, 55.2 +/- 13.5. No significant differences were found among the shear bond strength values for the metal-ceramic specimens tested.Conclusion. None of the base metal alloys studied demonstrated superior bond strength to the porcelain tested.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study aimed to compare in vitro the shear bond strength between metallic brackets (Abzil) with conventional mesh bases and metallic brackets with bases industrially sandblasted with aluminum oxide using three adhesive systems, in order to assess the influence of sandblasting on adhesiveness and to compare 3 different bonding systems. Two hundred and forty bovine incisors were used and randomly divided into 6 groups (40 teeth in each group), according to the bracket base and to the bonding system. The brackets were direct-bonded in bovine teeth with 3 adhesive systems: System A - conventional Transbond™ XT (3M -Unitek); System B - Transbond™ Plus Self Etching Primer + Transbond™ XT (3M - Unitek) and System C - Fuji ORTHO LC resin-reinforced glass ionomer cement in capsules (GC Corp.). Shear bond strength tests were performed 24 hours after bonding, in a DL-3000 universal testing machine (EMIC), using a load cell of 200 kgf and a speed of 1 mm/min. The results were submitted to statistical analysis and showed no significant difference between conventional and sandblasted bracket bases. However, comparison between the bonding systems presented significantly different results. System A (14.92 MPa) and system C (13.24 MPa) presented statistically greater shear bond strength when compared to system B (10.66 MPa). There was no statistically significant difference between system A and system C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statement of problem. Different combinations of Co-Cr alloys bonded to ceramic have been used in dentistry; however, the bond strength of ceramic to metal can vary because of different compositions of these alloys.Purpose. The purpose of this study was to evaluate the shear bond strength of a dental ceramic to 5 commercially available Co-Cr alloys.Material and methods. Five Co-Cr alloys (IPS d.SIGN 20, IPS d.SIGN 30, Remanium 2000, Heranium P, and Wirobond C) were tested and compared to a control group of an Au-Pd alloy (Olympia). Specimen disks, 5 mm high and 4 mm in diameter, were fabricated with the lost-wax technique. Sixty specimens were prepared using opaque and dentin ceramics (VITA Omega 900), veneered, 4 mm high and 4 mm in diameter, over the metal specimens (n = 10). The shear bond strength test was performed in a universal testing machine with a crosshead speed of 0.5 mm/min. After shear bond testing, fracture surfaces were evaluated in a stereomicroscope under x25 magnification. Ultimate shear bond strength (MPa) data were analyzed with 1-way ANOVA and the Tukey HSD test (alpha = .05).Results. The mean (SID) bond strengths (MPa) were: 61.4 (7.8) for Olympia; 94.0 (18.9) for IPS 20; 96.8 (10.2) for I PS 30; 75.1 (12.4) for Remanium; 71.2 (14.3) for Heranium P; and 63.2 (10.9) for Wirobond C. Mean bond strengths for IPS 20 and IPS 30 were not significantly different, but were significantly (P<.001) higher than mean bond strengths for the other 4 alloys, which were not significantly different from each other.Conclusions. Bond strength of a dental ceramic to a Co-Cr alloy is dependent on the alloy composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate the influence of surface treatment on the shear bond strength between a Co-Cr alloy and two ceramics.Materials and Methods: Forty-eight metal cylinders were made (thickness: 4 mm, height: 3.7 mm) according ISO TR 11405. The 48 metallic cylinders were divided into four groups (n = 12), according to the veneering ceramic (StarLight Ceram and Duceram Kiss) and surface treatments: air-particle abrasion with Al(2)O(3) or tungsten drill (W). Gr1: StarLight + Al(2)O(3); Gr2: StarLight + W; Gr3: Duceram + Al(2)O(3); and Gr4: Duceram + W. The specimens were aged using thermal cycling (3000 x, 5 to 55 degrees C, dwell time: 30 seconds, transfer time: 2 seconds). The shear test was performed with a universal testing machine, using a load cell of 100 kg (speed: 0.5 mm/min) and a specific device. The bond strength data were analyzed using ANOVA and Tukey's test (5%), and the failure modes were analyzed using an optical microscope (30x).Results: The means and standard deviations of the shear bond strengths were (MPa): G1 (57.97 +/- 11.34); G2 (40.62 +/- 12.96); G3 (47.09 +/- 13.19); and G4 (36.80 +/- 8.86). Ceramic (p = 0.03252) and surface treatment (p = 0.0002) significantly affected the mean bond strength values.Conclusions: Air-particle abrasion with Al(2)O(3) improved the shear bond strength between metal and ceramics used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate the micro-shear bond strength of 5 adhesive systems to enamel, one single-bottle acid-etch adhesive (O), two self-etching primers (P) and two all-in-one self-etching adhesives (S). Method: Sixty premolar enamel surfaces (buccal or lingual) were ground flat with 400- and 600-grit SiC papers and randomly divided into 5 groups (n=12), according to the adhesive system.. SB2 - Single Bond 2 (O); CSE - Clearfil SE Bond (P); ADS - AdheSE (P); PLP - Adper Prompt L-Pop (S); XE3 - Xeno III (S). Tygon tubing (inner diameter of 0.8mm) restricted the bonding area to obtain the resin composite (Z250) cylinders. After storage in distilled water at 37 degrees C for 24h and thermocycling, micro-shear testing was performed (crosshead speed of 0.5mm/min). Data were submitted to one-way ANOVA and Tukey test (a=5%). Samples were also subjected to stereomicroscopic and SEM evaluations after micro-shear testing. Mean bond strength values (MPa +/- SD) and the results of Tukey test were: SB2: 36.36(+/- 3.34)a; ADS: 33.03(+/- 7.83)a; XE3: 32.76(+/- 5.61)a; CSE: 30.61(+/- 6.68)a; PLP: 22.17(+/- 6.05)b. Groups with the same letter were not statistically different. It can be concluded that no significant difference was there between SB2, ADS, XE3 and CSE, in spite of different etching patterns of these adhesives. Only PLP presented statistically lower bond strengths compared with others. J Clin Pediatr Dent 35(3): 301-304, 2011

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effect of brushing with a Colgate 360° or Oral B Indicator 35 toothbrush on the shear bond strength of orthodontic brackets bonded to extracted human teeth. The bristle wear and bristle tip morphology were also examined after simulated tooth-brushing. Orthodontic brackets (Roth-P/1 st and 2 nd pre-molar S/D- Slot 0.18) were bonded (Transbond XT ®) to the smoothest surface of each of 45 extracted human molar and premolar teeth. Test specimens were randomly divided into three groups: Group 1, control group with no brushing; Group 2, brushing with the Oral B Indicator 35; Group 3, brushing with the Colgate 360°. Samples were adapted to a machine that simulated tooth-brushing. The bond strength of each bracket to each tooth was assessed with a mechanical testing machine. The bristle wear and bristle tip morphology indices were also assessed. Statistically significant differences were defined for p ≤ 0.05. The average bond strengths (range: 90.18-90.89 kgf/cm 2) did not differ among the three groups. The Colgate 360° showed less bristle wear and a better bristle tip morphology than the Oral B Indicator 35 toothbrush. However, use of either toothbrush did not decrease the bond strength of the orthodontic brackets. Therefore, patients undergoing orthodontic therapy can safely use either toothbrush.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate the shear bond strength and bond durability between a dual-cured resin cement (RC) and a high alumina ceramic (In-Ceram Alumina), subjected to two surface treatments. Materials and Methods: Forty disc-shaped specimens (sp) (4-mm diameter, 5-mm thick) were fabricated from In-Ceram Alumina and divided into two groups (n = 20) in accordance with surface treatment: (1) sandblasting by aluminum oxide particles (50 μm Al 2O 3) (SB) and (2) silica coating (30 μm SiO x) using the CoJet system (SC). After the 40 sp were bonded to the dual-cured RC, they were stored in distilled water at 37°C for 24 hours. After this period, the sp from each group were divided into two conditions of storage (n = 10): (a) 24 h-shear bond test 24 hours after cementation; (b) Aging-thermocycling (TC) (12,000 times, 5 to 55°C) and water storage (150 days). The shear test was performed in a universal test machine (1 mm/min). Results: ANOVA and Tukey (5%) tests noted no statistically significant difference in the bond strength values between the two surface treatments (p= 0.7897). The bond strengths (MPa) for both surface treatments reduced significantly after aging (SB-24: 8.2 ± 4.6; SB-Aging: 3.7 ± 2.5; SC-24: 8.6 ± 2.2; SC-Aging: 3.5 ± 3.1). Conclusion: Surface conditioning using airborne particle abrasion with either 50 μm alumina or 30 μm silica particles exhibited similar bond strength values and decreased after long-term TC and water storage for both methods. © 2011 by The American College of Prosthodontists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The environmental factors, such as humidity and temperature, can limit the applications of composites by deteriorating the mechanical properties over a period of time. Environmental factors play an important role during the manufacture step and during composite's life cycle. The degradation of composites due to environmental effects is mainly caused by chemical and/or physical damages in the polymer matrix, loss of adhesion at the fiber/matrix interface, and/or reduction of fiber strength and stiffness. Composite's degradation can be measure by shear tests because shear failure is a matrix dominated property. In this work, the influence of moisture in shear properties of carbon fiber/epoxy composites ( laminates [0/0](s) and [0/90](s)) have been investigated. The interlaminar shear strength (ILSS) was measured by using the short beam shear test, and Iosipescu shear strength and modulus (G(12)) have been determinated by using the Iosipescu test. Results for laminates [0/0](s) and [0/90](s), after hygrothermal conditioning, exhibited a reduction of 21% and 18% on the interlaminar shear strenght, respectively, when compared to the unconditioned samples. Shear modulus follows the same trend. A reduction of 14.1 and 17.6% was found for [0/0](s) and [0/90](s), respectively, when compared to the unconditioned samples. Microstructural observations of the fracture surfaces by optical and scanning electron microscopies showed typical damage mechanisms for laminates [0/0](s) and [0/90](s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite a plethora of in situ studies and clinical trials evaluating the efficacy of fluoridated dentifrices on caries control, in vitro pH cycling models are still broadly used because they mimic the dynamics of mineral loss and gain involved in caries formation. This paper critically reviews the current literature on existing pH-cycling models for the in vitro evaluation of the efficacy of fluoridated dentifrices for caries control, focusing on their strengths and limitations. A search was undertaken in the MEDLINE electronic journal database using the keywords "pH-cycling", "demineralization", "remineralization", "in vitro", "fluoride", "dentifrice". The primary outcome was the decrease of demineralization or the increase of remineralization as measured by different methods (e. g.: transverse microradiography) or tooth fluoride uptake. Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. One hundred and sixteen studies were included, of which 42 addressed specifically the comparison of dentifrices using different pH-cycling models. The other studies included meta-analysis or reviews, data about the effect of different fluoride sources on de-remineralization, different methods for analysis de-remineralization and chemical variables and characteristics of dental hard tissues that might have influence on de-remineralization processes. Generally, the studies presented ability to detect known results established by clinical trials, to demonstrate dose-related responses in the fluoride content of the dentifrices, and to provide repeatability and reproducibility between tests. In order to accomplish these features satisfactorily, it is mandatory to take into account the type of substrate and baseline artificial lesion, as well as the adequate response variables and statistical approaches to be used. This critical review of literature showed that the currently available pH-cycling models are appropriate to detect dose-response and pH-response of fluoride dentifrices, and to evaluate the impact of new active principles on the effect of fluoridated dentifrices, as well as their association with other anti-caries treatments.