216 resultados para Serials Solutions
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The migration of diethylhexyl phthalate (DEHP) from PVC bags into LVPS (0.9% NaCl) and LVPS with cyclosporine at concentrations of 2.5 and 0.5 mg/ml was studied. PVC bags were placed in contact with these solutions and stored at 25 1 degrees C. They were taken for analysis each 30 min during 6 h and after this period at each 1 h until 12 h of contact. Water was used as reference, and exposed and analyzed under the same conditions. After contact, the solutions were submitted to extraction with hexane and analyzed by GC-FID. The results showed that DEHP did not migrate into water and LVPS during all the time. Also, no measurable amount of DEHP was detected during the first 3 h of contact between the PVC bag and the diluted cyclosporine solution. However, the amount of released DEHP reached a detectable level after 4 It of contact, increased until 6 h, stabilized, and increased again after 9-10 h. The 12 h of contact showed the highest DEHP levels for both cyclosporine concentrations. The DEHP migrated was 0.02-0.08% of that present in the bag. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The problem of a fermion subject to a general mixing of vector and scalar potentials in a two-dimensional world is mapped into a Sturm-Liouville problem. Isolated bounded solutions are also searched. For the specific case of an inversely linear potential, which gives rise to an effective Kratzer potential in the Sturm-Liouville problem, exact bounded solutions are found in closed form. The case of a pure scalar potential with their isolated zero-energy solutions, already analyzed in a previous work, is obtained as a particular case. The behavior of the upper and lower components of the Dirac spinor is discussed in detail and some unusual results are revealed. The nonrelativistic limit of our results adds a new support to the conclusion that even-parity solutions to the nonrelativistic one-dimensional hydrogen atom do not exist. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this work we present some classes of models whose the corresponding two coupled first-order nonlinear equations can be put into a linear form, and consequently be solved completely. In these cases the so-called trial orbit method is completely unnecessary. We recall that some physically important models as, for instance, the problem of tiling a plane with a network of defects and polymer properties are in this class of models. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The problem of a fermion subject to a convenient mixing of vector and scalar potentials in a two-dimensional space-time is mapped into a Sturm-Liouville problem. For a specific case which gives rise to an exactly solvable effective modified Poschl-Teller potential in the Sturm-Liouville problem, bound-state solutions are found. The behaviour of the upper and lower components of the Dirac spinor is discussed in detail and some unusual results are revealed. The Dirac delta potential as a limit of the modified Poschl-Teller potential is also discussed. The problem is also shown to be mapped into that of massless fermions subject to classical topological scalar and pseudoscalar potentials. Copyright (C) EPLA, 2007.
Resumo:
In this work we present nonlinear models in two-dimensional space-time of two interacting scalar fields in the Lorentz and CPT violating scenarios. We discuss the soliton solutions for these models as well as the question of stability for them. This is done by generalizing a model recently published by Barreto and collaborators and also by getting new solutions for the model introduced by them.
Resumo:
Exact analytic solutions are found to the Dirac equation for a combination of Lorentz scalar and vector Coulombic potentials with additional non-Coulombic parts. An appropriate linear combination of Lorentz scalar and vector non-Coulombic potentials, with the scalar part dominating, can be chosen to give exact analytic Dirac wave functions.
Resumo:
The Dirac equation is analyzed for nonconserving-parity pseudoscalar radial potentials in 3+1 dimensions. It is shown that despite the nonconservation of parity this general problem can be reduced to a Sturm-Liouville problem of nonrelativistic fermions in spherically symmetric effective potentials. The searching for bounded solutions is done for the power-law and Yukawa potentials. The use of the methodology of effective potentials allow us to conclude that the existence of bound-state solutions depends whether the potential leads to a definite effective potential-well structure or to an effective potential less singular than -1/4r(2).
Resumo:
Exact bounded solutions for a fermion subject to exponential scalar potential in 1 + 1 dimensions are found in closed form. We discuss the existence of zero modes which are related to the ultrarelativistic limit of the Dirac equation and are responsible for the induction of a fractional fermion number on the vacuum.
Resumo:
The intrinsically relativistic problem of a fermion subject to a pseudoscalar screened Coulomb plus a uniform background potential in two-dimensional space-time is mapped into a Sturm-Liouville. This mapping gives rise to an effective Morse-like potential and exact bounded solutions are found. It is shown that the uniform background potential determinates the number of bound-state solutions. The behaviour of the eigenenergies as well as of the upper and lower components of the Dirac spinor corresponding to bounded solutions is discussed in detail and some unusual results are revealed. An apparent paradox concerning the uncertainty principle is solved by recurring to the concepts of effective mass and effective Compton wavelength. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this work we solve the Dirac equation by constructing the exact bound state solutions for a mixing of vector and scalar generalized Hartmann potentials. This is done provided the vector potential is equal to or minus the scalar potential. The cases of some quasi-exactly solvable and Morse-like potentials are briefly commented. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The problem of a fermion subject to a general scalar potential in a two-dimensional world for nonzero eigenenergies is mapped into a Sturm-Liouville problem for the upper component of the Dirac spinor. In the specific circumstance of an exponential potential, we have an effective Morse potential which reveals itself as an essentially relativistic problem. Exact bound solutions are found in closed form for this problem. The behaviour of the upper and lower components of the Dirac spinor is discussed in detail, particularly the existence of zero modes. (c) 2005 Elsevier B.v. All rights reserved.
Resumo:
The Duffin-Kemmer-Petiau (DKP) equation, in the scalar sector of the theory and with a linear nominimal vector potential, is mapped into the nonrelativistic harmonic oscillator problem. The behavior of the solutions for this sort of vector DKP oscillator is discussed in detail.