75 resultados para Sequence motif analysis
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The Coleoptera order is the richest group among Metazoa, but its phylogenetics remains incompletely understood. Among Coleoptera, bioluminescence is found within the Elateroidea, but the evolution of this character remains a mystery. Mitochondrial DNA has been used extensively to reconstruct phylogenetic relationships, however, the evolution of a single gene does not always correspond to the species evolutionary history and the molecular marker choice is a key step in this type of analysis. To create a solid basis to better understand the evolutionary history of Coleoptera and its bioluminescence, we sequenced and comparatively analyzed the mitochondrial genome of the Brazilian luminescent click beetle Pyrophorus divergens (Coleoptera: Elateridae). © 2007 Elsevier B.V. All rights reserved.
Resumo:
Background. The emergence of multi- and extensively-drug resistant Mycobacterium tuberculosis strains has created an urgent need for new agents to treat tuberculosis (TB). The enzymes of shikimate pathway are attractive targets to the development of antitubercular agents because it is essential for M. tuberculosis and is absent from humans. Chorismate synthase (CS) is the seventh enzyme of this route and catalyzes the NADH- and FMN-dependent synthesis of chorismate, a precursor of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins. Although the M. tuberculosis Rv2540c (aroF) sequence has been annotated to encode a chorismate synthase, there has been no report on its correct assignment and functional characterization of its protein product. Results. In the present work, we describe DNA amplification of aroF-encoded CS from M. tuberculosis (MtCS), molecular cloning, protein expression, and purification to homogeneity. N-terminal amino acid sequencing, mass spectrometry and gel filtration chromatography were employed to determine identity, subunit molecular weight and oligomeric state in solution of homogeneous recombinant MtCS. The bifunctionality of MtCS was determined by measurements of both chorismate synthase and NADH:FMN oxidoreductase activities. The flavin reductase activity was characterized, showing the existence of a complex between FMN ox and MtCS. FMNox and NADH equilibrium binding was measured. Primary deuterium, solvent and multiple kinetic isotope effects are described and suggest distinct steps for hydride and proton transfers, with the former being more rate-limiting. Conclusion. This is the first report showing that a bacterial CS is bifunctional. Primary deuterium kinetic isotope effects show that C4-proS hydrogen is being transferred during the reduction of FMNox by NADH and that hydride transfer contributes significantly to the rate-limiting step of FMN reduction reaction. Solvent kinetic isotope effects and proton inventory results indicate that proton transfer from solvent partially limits the rate of FMN reduction and that a single proton transfer gives rise to the observed solvent isotope effect. Multiple isotope effects suggest a stepwise mechanism for the reduction of FMNox. The results on enzyme kinetics described here provide evidence for the mode of action of MtCS and should thus pave the way for the rational design of antitubercular agents. © 2008 Ely et al; licensee BioMed Central Ltd.
Resumo:
Background: Uterine Leiomyomas (ULs) are the most common benign tumours affecting women of reproductive age. ULs represent a major problem in public health, as they are the main indication for hysterectomy. Approximately 40-50% of ULs have non-random cytogenetic abnormalities, and half of ULs may have copy number alterations (CNAs). Gene expression microarrays studies have demonstrated that cell proliferation genes act in response to growth factors and steroids. However, only a few genes mapping to CNAs regions were found to be associated with ULs. Methodology: We applied an integrative analysis using genomic and transcriptomic data to identify the pathways and molecular markers associated with ULs. Fifty-one fresh frozen specimens were evaluated by array CGH (JISTIC) and gene expression microarrays (SAM). The CONEXIC algorithm was applied to integrate the data. Principal Findings: The integrated analysis identified the top 30 significant genes (P<0.01), which comprised genes associated with cancer, whereas the protein-protein interaction analysis indicated a strong association between FANCA and BRCA1. Functional in silico analysis revealed target molecules for drugs involved in cell proliferation, including FGFR1 and IGFBP5. Transcriptional and protein analyses showed that FGFR1 (P = 0.006 and P<0.01, respectively) and IGFBP5 (P = 0.0002 and P = 0.006, respectively) were up-regulated in the tumours when compared with the adjacent normal myometrium. Conclusions: The integrative genomic and transcriptomic approach indicated that FGFR1 and IGFBP5 amplification, as well as the consequent up-regulation of the protein products, plays an important role in the aetiology of ULs and thus provides data for potential drug therapies development to target genes associated with cellular proliferation in ULs. © 2013 Cirilo et al.
Resumo:
In this work we isolated a novel crotamine like protein from the Crotalus durissus cascavella venom by combination of molecular exclusion and analytical reverse phase HPLC. Its primary structure was:YKRCHKKGGHCFPKEKICLPPSSDLGKMDCRWKRK-CCKKGS GK. This protein showed a molecular mass of 4892.89 da that was determined by Matrix Assisted Laser Desorption Ionization Time-of-flight (MALDI-TOF) mass spectrometry. The approximately pI value of this protein was determined in 9.9 by two-dimensional electrophoresis. This crotamine-like protein isolated here and that named as Cro 2 produced skeletal muscle spasm and spastic paralysis in mice similarly to other crotamines like proteins. Cro 2 did not modify the insulin secretion at low glucose concentration (2.8 and 5.6 mM), but at high glucose concentration (16.7 mM) we observed an insulin secretion increasing of 2.7-3.0-fold than to control. The Na+ channel antagonist tetrodoxin (6 mM) decreased glucose and Cro 2-induced insulin secretion. These results suggested that Na+ channel are involved in the insulin secretion. In this article, we also purified some peptide fragment from the treatment of reduced and carboxymethylated Cro 2 (RC-Cro 2) with cyanogen bromide and protease V8 from Staphylococcus aureus. The isolated pancreatic beta-cells were then treated with peptides only at high glucose concentration (16.7 mM), in this condition only two peptides induced insulin secretion. The amino acid sequence homology analysis of the whole crotamine as well as the biologically-active peptide allowed determining the consensus region of the biologically-active crotamine responsible for insulin secretion was KGGHCFPKE and DCRWKWKCCKKGSG.
Resumo:
O presente trabalho teve como objetivo a identificação e caracterização de um potyvírus isolado de Zinnia elegans, na Região Noroeste do Estado de São Paulo. O potyvírus foi transmitido por inoculação mecânica e apresentou uma gama restrita de hospedeiras sendo que as espécies mais afetadas pertencem à família Asteraceae. em SDS-PAGE, a massa molecular da proteína capsidial (CP) foi estimada em 33 kDa e, em Western-blot, reagiu com anti-soro para o Bidens mosaic virus (BiMV). Um fragmento de aproximadamente 820 pb foi amplificado por RT/PCR, clonado e seqüenciado. O fragmento, que inclui o gene da proteína capsidial, mostrou similaridade de aminoácidos do core da CP variando de 55% (Tobacco vein mottling virus, TVMV) a 95% (Sunflower chlorotic mottle virus, SuCMoV) e da CP completa de 55% (TVMV) a 91% (SuCMoV). Na região N-terminal, o potyvírus de Zinnia tem uma deleção de quatro aminoácidos (posições 9 a 12 após o sítio de clivagem entre a proteína NIb e a CP) quando comparada com a seqüência do SuCMoV. A análise filogenética agrupou o potyvírus de Zinnia e o SuCMoV em um mesmo ramo em 100% das réplicas, mostrando uma relação de parentesco muito próxima entre esses dois vírus. Os resultados obtidos no presente trabalho demonstraram que o potyvírus de Zinnia e o SuCMoV são estirpes do mesmo vírus. Sugere-se o nome Sunflower chlorotic mottle virus, isolado Zinnia (SuCMoV-Zi), ao potyvírus encontrado em Z. elegans no Brasil.
Resumo:
O músculo estriado esquelético é formado pela associação de fibras musculares com a matriz extracelular. Esse tecido possui alta plasticidade e o conhecimento das características morfológicas, da miogênese, e da dinâmica do crescimento é importante para o entendimento da morfofisiologia bem como para a seleção de animais visando a melhoria na produção de carne. A maioria dos músculos estriados originam-se de células precursoras do mesoderma a partir dos somitos do embrião e o controle da diferenciação ocorre pela ação de fatores indutores ou inibidores. Um grupo de fatores transcricionais, pertencentes à família MyoD tem um papel central na diferenciação muscular. Coletivamente chamados de Fatores de Regulação Miogênica (MRFs), são conhecidos quatro tipos: MyoD, myf-5, miogenina e MRF4. Esses fatores ligam-se à seqüências de DNA conhecidas como Ebox (CANNTG) na região promotora de vários genes músculo-específicos, levando à expressão dos mesmos. As células embrionárias com potencial para diferenciação em células musculares (células precursoras miogênicas) expressam MyoD e Myf-5 e são denominadas de mioblastos. Essas células proliferam, saem do ciclo celular, expressam miogenina e MRF4, que regulam a fusão e a diferenciação da fibra muscular. Uma população de mioblastos que se diferencia mais tardiamente, as células miossatélites, são responsáveis pelo crescimento muscular no período pós natal, que pode ocorrer por hiperplasia e hipertrofia das fibras. As células satélites quiescentes não expressam os MRFs, porém, sob a ação de estímulos como fatores de crescimento ou citocinas, ocorre a ativação desse tipo celular que prolifera e expressa os MRFs de maneira similar ao que ocorre com as células precursoras miogênicas durante a miogênese. Os mecanismos de crescimento muscular são regulados pela expressão temporal dos (MRFs), que controlam a expressão dos genes relacionados com o crescimento muscular.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this study is the geometric characterization of a fluvial system, exemplified by the Itaquaquecetuba Formation. The studied area is a quarry located in Itaquaquecetuba, distant 35 km from the city of São Paulo, which is inserted in the context of São Paulo Basin. Fluvial systems are important hydrocarbon reservoirs, and this study may contribute with an analogue for ancient reservoirs. It was elaborated ten facies logs along a distance of 200 m (log spacing of 20 m), with a vertical column (thickness) of 40 m for each log. Eight facies cycles, and its lateral chrono-correlation allowed to map the potential reservoir and non-reservoir facies within each cycle. Regarding the depositional model for the studied section, it is assumed an alluvial fan system composed of meandering and ribbon-type fluvial channels.
Resumo:
Aicardi-Goutières syndrome (AGS) is a genetic encephalopathy whose clinical features mimic those of acquired in utero viral infection. AGS exhibits locus heterogeneity, with mutations identified in genes encoding the 3′→5′ exonuclease TREX1 and the three subunits of the RNASEH2 endonuclease complex. To define the molecular spectrum of AGS, we performed mutation screening in patients, from 127 pedigrees, with a clinical diagnosis of the disease. Biallelic mutations in TREX1, RNASEH2A, RNASEH2B, and RNASEH2C were observed in 31, 3, 47, and 18 families, respectively. In five families, we identified an RNASEH2A or RNASEH2B mutation on one allele only. In one child, the disease occurred because of a de novo heterozygous TREX1 mutation. In 22 families, no mutations were found. Null mutations were common in TREX1, although a specific missense mutation was observed frequently in patients from northern Europe. Almost all mutations in RNASEH2A, RNASEH2B, and RNASEH2C were missense. We identified an RNASEH2C founder mutation in 13 Pakistani families. We also collected clinical data from 123 mutation-positive patients. Two clinical presentations could be delineated: an early-onset neonatal form, highly reminiscent of congenital infection seen particularly with TREX1 mutations, and a later-onset presentation, sometimes occurring after several months of normal development and occasionally associated with remarkably preserved neurological function, most frequently due to RNASEH2B mutations. Mortality was correlated with genotype; 34.3% of patients with TREX1, RNASEH2A, and RNASEH2C mutations versus 8.0% RNASEH2B mutation-positive patients were known to have died (P = .001). Our analysis defines the phenotypic spectrum of AGS and suggests a coherent mutation-screening strategy in this heterogeneous disorder. Additionally, our data indicate that at least one further AGS-causing gene remains to be identified. © 2007 by The American Society of Human Genetics. All rights reserved.
Resumo:
A PCR-RFLP analysis of the restriction pattern in nuclear (RAG2) and mitochondrial (12S/16S) gene sequences of bat species from the Molossidae, Phyllostomidae, Vespertilionidae, and Emballonuridae families produced a large number of fragments: 107 for RAG2 and 155 for 12S/16S combined in 139 and 402 haplotypes, respectively. The values detected for gene variation were low for both sequences (0.13 for RAG2 and 0.15 for 12S/16S) and reflected their conservative feature, reinforced by high values of inter- and intraspecies genetic identity (70-100%). The species with a high gene divergence were variable in the analyses of RAG2 (Eumops perotis, Artibeus lituratus, and Carollia perspicillata) and of 12S/16S (Nyctinomops laticaudatus, C. perspicillata, and Cynomops abrasus), and furthermore, one of them, C. perspicillata, also showed the highest intraspecific variation. The species that exhibited the lowest variation for both genes was Molossus rufus. In the families, the highest variation was observed in the Molossidae and this can be attributed to variation exhibited by Eumops and Nyctinomops species. The variations observed were interpreted as a natural variability within the species and genus that exhibited a conserved pattern in the two gene sequences in different species and family analyzed. Our data reinforce the idea that the analyses of mitochondrial and nuclear genes contribute to our knowledge of the diversity of New World bats. The genetic variability found in different taxa suggests that an additional diversity, unnoticed by other methods, can be revealed with the use of different molecular strategies. ©FUNPEC-RP.
Resumo:
A protocol to produce large amounts of bioactive homogeneous human interferon β1 expressed in Escherichia coli was developed. Human interferon β1 ser17 gene was constructed, cloned and subcloned, and the recombinant protein expressed in E. coli cells. Solubilization of recombinant human interferon β1 ser17 (rhIFN-β1 ser17) was accomplished by employing a brief shift to high alkaline pH in the presence of non-ionic detergent. The recombinant protein was purifi ed by three chromatographic steps. N-terminal amino acid sequencing and mass spectrometry analysis provided experimental evidence for the identity of the recombinant protein. Reverse phase liquid chromatography demonstrated that the content of deamidates and sulphoxides was similar to a commercial standard. Size exclusion chromatography demonstrated the absence of high molecular mass aggregates and dimers. The protocol represents an effi cient and high-yield method to obtain bioactive homogeneous monomeric rhIFN-β1 ser17 protein. It may thus represent an important step towards scaling up for rhIFN-β1 ser17 large-scale production. © 2010 Villela AD, et al.
Resumo:
Pós-graduação em Ciências Biológicas (Genética) - IBB
Resumo:
The main goal of our research was to search for SSRs in the Eucalyptus EST FORESTs database (using a software for mining SSR-motifs). With this objective, we created a database for cataloging Eucalyptus EST-derived SSRs, and developed a bioinformatics tool, named Satellyptus, for finding and analyzing microsatellites in the Eucalyptus EST database. The search for microsatellites in the FORESTs database containing 71,115 Eucalyptus EST sequences (52.09 Mb) revealed 20,530 SSRs in 15,621 ESTs. The SSR abundance detected on the Eucalyptus ESTs database (29% or one microsatellite every four sequences) is considered very high for plants. Amongst the categories of SSR motifs, the dimeric (37%) and trimeric ones (33%) predominated. The AG/CT motif was the most frequent (35.15%) followed by the trimeric CCG/CGG (12.81%). From a random sample of 1,217 sequences, 343 microsatellites in 265 SSR-containing sequences were identified. Approximately 48% of these ESTs containing microsatellites were homologous to proteins with known biological function. Most of the microsatellites detected in Eucalyptus ESTs were positioned at either the 5 or 3 end. Our next priority involves the design of flanking primers for codominant SSR loci, which could lead to the development of a set of microsatellite-based markers suitable for marker-assisted Eucalyptus breeding programs.
Resumo:
To contribute to our understanding of the genome complexity of sugarcane, we undertook a large-scale expressed sequence tag (EST),program. More than 260,000 cDNA clones were partially sequenced from 26 standard cDNA libraries generated from different sugarcane tissues. After the processing of the sequences, 237,954 high-quality ESTs were identified. These ESTs were assembled into 43,141 putative transcripts. of the assembled sequences, 35.6% presented no matches with existing sequences in public databases. A global analysis of the whole SUCEST data set indicated that 14,409 assembled sequences (33% of the total) contained at least one cDNA clone with a full-length insert. Annotation of the 43,141 assembled sequences associated almost 50% of the putative identified sugarcane genes with protein metabolism, cellular communication/signal transduction, bioenergetics, and stress responses. Inspection of the translated assembled sequences for conserved protein domains revealed 40,821 amino acid sequences with 1415 Pfam domains. Reassembling the consensus sequences of the 43,141 transcripts revealed a 22% redundancy in the first assembling. This indicated that possibly 33,620 unique genes had been identified and indicated that >90% of the sugarcane expressed genes were tagged.
Resumo:
Two L-amino acid oxidases (LAAOs) were identified by random sequencing of cDNA libraries from the venom glands of Bothrops moojeni (BmooLAAO) and Bothrops jararacussu (Bjussu LAAO). Phylogenetic analysis involving other SV-LAAOs showed sequence identities within the range 83-87% being closely related to those from Agkistrodon and Trimeresurus. Molecular modeling experiments indicated the FAD-binding, substrate-binding, and helical domains of Bmoo and Bjussu LAAOs. The RMS deviations obtained by the superposition of those domains and that from Calloselasma rhodostoma LAAO crystal structure confirm the high degree of structural similarity between these enzymes. Purified BjussuLAAO-I and BmooLAAO-I exhibited antiprotozoal activities which were demonstrated to be hydrogen-peroxide mediated. This is the first report on the isolation and identification of cDNAs encoding LAAOs from Bothrops venom. The findings here reported contribute to the overall structural elucidation of SV-LAAOs and will advance the understanding on their mode of action. (c) 2006 Elsevier B.V. All rights reserved.