2 resultados para Self-sustainable

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Luminescent biocellulose membranes were obtained by incorporation of ethanolic solutions of the europium compounds [Eu(BTFAC)3(H2O)2], [Eu(BTFA) 3(DBSO)2], [Eu(BTFA)3(PTSO)2] and [Eu(BTFA)3(FSO)2] (BTFAC- 4,4,4-Trifluoro-1- phenyl-1,3-butanedione DBSO- dibenzyl sulfoxide, PTSO- p-Tolyl sulfoxide and FSO- phenyl sulfoxide). Selfsustainable semi-transparent composite membranes were obtained showing strong emission under UV exctiation. The antenna hole played by the ligands was observed to be more efficient in the composite membranes than in the precursor complexes which by themselves are also strong red emitter compounds. These new multifuctional membranes could find application in different areas as phosphors and UV→Visible energy converting devices. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents a self-sustainable lighting system using ultracapacitor as a storage device, replacing the conventional battery, using solar energy as the only energy supplier. A detailed study of solar panels, switched mode converters and ultracapacitors was made, in order to design a circuit capable of capturing solar energy and transfer it efficiently to a bank of ultracapacitors. Later, at nighttime, this energy is used for lighting in LED luminaires which have high luminous efficiency and high reliability index. This work presents the design of the solar panel, ultracapacitors bank, the development of the voltage converter circuit and charger working at the maximum power point of the solar panel. All subsystems were simulated and it was shown that the use of ultracapacitors is feasible to feed a LED lamp with enough brightness for a person to walk at night, for two night shifts, using a capacitive bank with twenty-four ultracapacitors. Replacing the battery by an ultracapacitor allows a faster recharge, with low maintenance costs, since ultracapacitors have a lifetime bigger than batteries; beyond reducing the environmental impact, as they don't use potentially toxic chemical compounds