15 resultados para Seed survival
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
About 45 palm species occur in the Atlantic forest of Brazil, and most of them are affected by loss of seed dispersers resulting from forest fragmentation and hunting. Here we report the effects of habitat loss and defaunation on the seed dispersal system of an endemic palm, Astrocaryum aculeatissimum. We evaluated seed removal, insect and rodent seed predation, and scatter-hoarding in nine sites, ranging from 19 ha to 79 000 ha. We report the seedling, juvenile and adult palm densities in this range of sites. Endocarps remaining beneath the parent palm had a higher probability of being preyed upon by insects in small, mostly fragmented and more defaunated sites. The frequency of successful seed removal, scatter-hoarding and consumption by rodents increased in the larger, less defaunated sites. Successful removal and dispersal collapsed in small (< 1000 ha), highly defaunated sites and frequently resulted in low densities of both seedlings and juveniles. Our results indicate that a large fraction of Atlantic forest palms that rely on scatter-hoarding rodents may become regionally extinct due to forest fragmentation and defaunation. Current management practices including palm extraction and hunting pressure have a lasting effect on Atlantic forest palm regeneration by severely limiting successful recruitment of prereproductive individuals.(c) 2006 the Linnean Society of London.
Resumo:
The establishment of plant species depends crucially on where the seeds are deposited. However, since most studies have been conducted in continuous forests, not much is known about the effects of forest fragmentation on the maintenance of abiotic and biotic characteristics in microhabitats and their effects on seed survival. in this study, we evaluated the effects of forest fragmentation on the predation upon the seeds of the palm Syagrus romanzoffiana in three microhabitats (interior forest, forest edge and gaps) in eight fragments of semi-deciduous Atlantic forest ranging in size from 9.5 ha to 33,845 ha in southeastern Brazil. Specifically, we examined the influence of the microhabitat structure, fauna and fragment size on the pattern of seed predation. Fragments < 100 ha showed similar abiotic and biotic characteristics to those of the forest edge, with no seed predation in these areas. Forest fragments 230-380 ha in size did not present safe sites for S. romanzoffiana seed survival and showed high seed predation intensity in all microhabitats evaluated. In fragments larger than 1000 ha, the seed predation was lower, with abiotic and biotic differences among gaps, interior forests and forest edges. In these fragments, the survival of S. romanzoffiana seeds was related to squirrel abundance and interior forest maintenance. Based on these results, we concluded that there are no safe sites for S. romanzoffiana seed establishment in medium- and small-sized fragments as result of the biotic and abiotic pressure, respectively We suggest that on these forest fragments, management plans are needed for the establishment of S. romanzoffiana, such as interior forest improvement and development in small-sized sites in order to minimize the edge effects, and on medium-sized fragments, we suggest post-dispersal seed protection in order to avoid seed predation by vertebrates. our findings also stress the importance of assessing the influence of forest fragmentation on angiosperm reproductive biology as part of the effective planning for the management of fragmented areas. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Seed dispersal effectiveness (SDE) is a conceptual framework that aims at quantifying the contribution of seed dispersal vectors to plant fitness. While it is well recognized that diplochorous dispersal systems, characterized by two successive dispersal steps performed by two different vectors (Phase I=primary seed dispersal and Phase II=secondary seed dispersal) which are common in temperate and tropical regions, little attention has been given to distinguishing the relative contribution of one-phase and two-phase dispersal to overall SDE. This conceptual gap probably results from the lack of a clear methodology to include Phase II dispersal into the calculation of SDE and to quantify its relative contribution. We propose a method to evaluate the relative contribution of one-phase and two-phase dispersal to SDE and determine whether two seed dispersers are better than one. To do so, we used the SDE landscape and an extension of the SDE landscape, the Phase II effect landscape, which measures the direction and magnitude of the Phase II dispersal effect on overall SDE. We used simulated and empirical data from a diplochorous dispersal system in the Peruvian Amazon to illustrate this new approach. Our approach provides the relative contribution of one-phase SDE (SDE1) and two-phase SDE (SDE2) to overall SDE and quantifies how much SDE changes with the addition of Phase II dispersal. Considering that the seed dispersal process is context dependent so that Phase II depends on Phase I, we predict the possible range of variation of SDE according to the variation of the probability of Phase II dispersal. In our specific study system composed of two primate species as primary dispersal vectors and different species of dung beetles as secondary dispersal vectors, the relative contribution of SDE1 and SDE2 to overall SDE varied between plant species. We discuss the context dependency of the Phase II dispersal and the potential applications of our approach. This extension to the conceptual framework of SDE enables quantitative evaluation of the effect of Phase II dispersal on plant fitness and can be easily adapted to other biotic and/or abiotic diplochorous dispersal systems.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The seed deposition pattern created by a seed disperser is one of the components of the efficiency of a species as seed disperser, and ultimately may influence the recruitment of a plant species. In this study, we used the seeds of a bird-dispersed forest palm, Euterpe edulis, to investigate the effects of two distinct seed deposition patterns created by birds that defecate (clumped pattern) and regurgitate seeds (loose-clumped pattern) on the survival of seeds experimentally set in an E. edulis-rich site, and of seedlings grown under shade-house conditions. The study was conducted in the lowland forest of Parque Estadual Intervales, SE Brazil. Clumped and loose-clumped seeds were equally preyed upon by rodents and insects. Although clumped and isolated seedlings had the same root weight after 1 year, the isolated seedlings survived better and presented more developed shoots, suggesting intraspecific competition among clumped seedlings. Our results indicate that animals that deposit E. edulis seeds in faecal clumps (e.g. cracids, tapirs) are less efficient seed dispersers than those that regurgitate seeds individually (e.g. trogons, toucans). Intraspecific competition among seedlings growing from faecal clumps is a likely process preventing the occurrence of clumps of adult palms. (C) 2001 Editions scientifiques et medicales Elsevier SAS.
Resumo:
Intraspecific variation in seed size is common in wild plant populations and has important consequences for the reproductive success of individual plants. Multiple, often conflicting evolutionary forces mediated by biotic as well as abiotic agents may maintain such a variation. In this paper we assessed seed size variation in a population of the threatened, commercially important palm Euterpe edulis in southeast Brazil. We investigated (i) how this variation affects the probability of attack by vertebrate and invertebrate post-dispersal seed predators, and (ii) if seed size influences the outcome of seeds damaged by beetles in terms of seed germination and early survival of seedlings. Euterpe edulis seeds varied in diameter from 8.3 to 14.1 mm. Neither insects nor rodents selected the seeds they preyed upon based on seed size. Seed germination and total, shoot and root biomasses of one-year seedlings were significantly and positively affected by seed size. Root biomass and seedling survival were negatively affected by seed damage caused by a scolytid beetle (Coccotrypes palmarum) whose adults bore into seeds to consume part of the endosperm, but do not oviposit on them. Seed size had a marginally significant effect on seedling survival. Therefore, if any advantage is accrued by E. edulis individuals producing large seeds, this is because of greater seed germination success and seedling vigor. If this is so, even a relatively narrow range of variation in seed size as observed in the E. edulis population studied may translate into differential success of individual plants. (c) 2006 Elsevier SAS. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
With seeds collected monthly during one year from 53 1-m(2) seed traps, we investigated the seed rain and seed limitation in a gallery forest planted in 1994 in SE Brazil. Contrasting animal- (zoochorous) and wind-dispersed (anemochorous) plants we investigated (1) which aspects of the composition and structure of the vegetation influence the abundance and species richness of the seed rain; (2) if such influences differ between zoochorous and anemochorous seeds; (3) if the abundance and richness of the seed rain sampled under zoochorous and nonzoochorous plant species differ; and (4) if seed limitation (given by the proportion of sites to which seeds were not dispersed) differs between zoochorous and anemochorous plant species, and also between species that have been planted and those that further colonized the area (colonists). Seed rain was intense and dominated by anemochorous species. The overall seed rain was not influenced by the vegetation parameters we analyzed (canopy height and cover, plant size, abundance, and richness) or by the plant species above the seed trap. The abundance and richness of zoochorous seeds in a given spot was influenced by the abundance and richness of zoochorous plants in its immediate vicinity. Seed limitation was higher for anemochorous than zoochorous species and higher for planted than for colonist species. We concluded with recommendations for the initial establishment of a planted forest, including the homogeneous distribution of zoochorous plants to permit a spatially homogeneous zoochorous seedfall, which will likely enhance the chances of survival and successful establishment of seeds.
Resumo:
Bamboos often negatively affect tree recruitment, survival, and growth, leading to arrested tree regeneration in forested habitats. Studies so far have focused on the effects of bamboos on the performance of seedlings and saplings, but the influence of bamboos on forest dynamics may start very early in the forest regeneration process by altering seed rain patterns. We tested the prediction that the density and composition of the seed rain are altered and seed limitation is higher in stands of Guadua tagoara (B or bamboo stands), a large-sized woody bamboo native from the Brazilian Atlantic Forest, compared to forest patches without bamboos (NB or non-bamboo stands). Forty 1 m(2) seed traps were set in B and NB stands, and the seed rain was monitored monthly for 1 year. The seed rain was not greatly altered by the presence of bamboos: rarefied seed species richness was higher for B stands, patterns of dominance and density of seeds were similar between stands, and differences in overall composition were slight. Seed limitation, however, was greater at B stands, likely as a resulted of reduced tree density. Despite Such reduced density, the presence of trees growing amidst and over the bamboos seems to play a key role in keeping the seeds falling in B stands because they serve as food sources for frugivores or simply as perches for them. The loss of such trees may lead to enhanced seed limitation, contributing ultimately to the self-perpetuating bamboo disturbance cycle. (C) 2008 Elsevier B,V. All rights reserved.
Resumo:
The maned wolf Chrysocyon brachyurus is the largest canid inhabiting South America. Its geographic distribution includes the open fields of Brazil's central area, which is currently undergoing agricultural expansion. The diet of the maned wolf and its seasonal variation was determined on a dairy cattle ranch (Sao Luis farm, 566 ha) in the State of Minas Gerais, Brazil. From January to December faeces of the maned wolf were collected monthly (n = 150 scats; 397 food item occurrences). Twenty-nine taxa were identified from scats, 18 of animal origin (46% or 183 occurrences) and 11 of plants (54% or 214 occurrences). The fruits of Solanum lycocarpum were the dominant food item in our study (29%). Mammals contributed 13%, arthropods 12%, birds 11% and reptiles 2% of the food items. Arthropods and fruits were prevalent in the rainy season and mammals in the dry season. As expected for a heavily fanned region, frugivory results were at the lower end of the diversity scale (9-33 species) and included four old garden species. No previous study of the diet of maned wolf has registered as many species of Solanaceae as this one. Although dietary richness was lower, the main food items (wolf fruit, armadillos, rodents, birds) were the same as study sites in 'cerrado' and upland meadows. In this region, the open habitats occupied by the maned wolf were previously covered by Atlantic forest, suggesting that landscape modification such as cattle ranching has opened new frontiers for distribution expansion of the maned wolf. The impact of loss of dietary richness and the increase in Solanaceae on the survival of the maned wolf need to be evaluated.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Palicourea rigida H.B.K. (Rubiaceae), a medicinal species commonly known as douradinha, has wide distribution across ecosystems in Central and South America. This species exhibits seed dormancy delaying germination until optimal conditions for seedling growth and development are in place. While dormancy ensures species survival, it also presents a technical problem for developing P. rigida’s plant production program. Thus, the objective of this study was to investigate if secondary metabolites present in seeds influence the seed dormancy of P. rigida. Mature fruits were harvested from the native habitat, in the savanna region of the State of Minas Gerais during February 2009, 2010 and 2011. The content of phenolic compounds in the seed of P. rigida was measured, and the allelopathic effects were assessed using the germination of lettuces as model to detect phytotoxicity. The P. rigida seeds geminated at rates varying between 7% and 31% with a Seed Germination Index (SGI) of 0.09. Data suggest that the phenolic compounds present in the seeds may be responsible for seed dormancy.