71 resultados para Secular
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Due to the tides, the orbits of Phobos and Triton are contracting. While their semi major axes are decreasing, several possibilities of secular resonances involving node, argument of the pericenter and mean motion of the Sun will take place. In the case of Mars, if the obliquity (epsilon), during the passage through some resonances, is not so small, very significant variations of the inclination will appear. In one case, capture is almost certain provided that epsilon greater than or equal to 20degrees. For Triton there are also similar situations, but capture seems to be not possible, mainly because in S-1 state, Triton's orbit is sufficiently inclined (far) with respect to the Neptune's equator. Following Chyba et al. (Astron. Astrophys. 219 (1989) 123), a simplified equation that gives the evolution of the inclination versus the semi major axis, is derived. The time needed for Triton crash onto Neptune is longer than that one obtained by these authors, but the main difference is due to the new data used here. In general, even in the case of non-capture passages, some significant jumps in inclination and in eccentricities are possible. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
No Brasil, a partir da última década do século XIX, com a organização republicana da instrução pública, observa-se o início de um movimento de escolarização das práticas de leitura e escrita e de identificação entre o processo de ensino inicial dessas práticas e a questão dos métodos. A partir de então, a cartilha vai-se consolidando como um imprescindível instrumento de concretização dos métodos propostos e, em decorrência, de configuração de determinado conteúdo de ensino, assim como de certas silenciosas, mas operantes, concepções de alfabetização, leitura, escrita e texto, cuja finalidade e utilidade se encerram nos limites da própria escola e cuja permanência se pode observar até os dias atuais. O objetivo deste artigo é, mediante análise dessas questões, problematizar a relação entre cartilha de alfabetização e cultura escolar e seus desdobramentos na história da educação e da alfabetização em nosso país.
Resumo:
Consider a finite body of mass m (C1) with moments of inertia A, B and C. This body orbits another one of mass much larger M (C2), which at first will be taken as a point, even if it is not completely spherical. The body C1, when orbit C2, performs a translational motion near a Keplerian. It will not be a Keplerian due to external disturbances. We will use two axes systems: fixed in the center of mass of C1 and other inertial. The C1 attitude, that is, the dynamic rotation of this body is know if we know how to situate mobile system according to inertial axes system. The strong influence exerted by C2 on C1, which is a flattened body, generates torques on C1, what affects its dynamics of rotation. We will obtain the mathematical formulation of this problem assuming C1 as a planet and C2 as the sun. Also applies to case of satellite and planet. In the case of Mercury-Sun system, the disturbing potential that governs rotation dynamics, for theoretical studies, necessarily have to be developed by powers of the eccentricity. As is known, such expansions are delicate because of the convergence issue. Thus, we intend to make a development until the third order (superior orders are not always achievable because of the volume of terms generated in cases of first-order resonances). By defining a modern set of canonical variables (Andoyer), we will assemble a disturbed Hamiltonian problem. The Andoyer's Variables allow to define averages, which enable us to discard short-term effects. Our results for the resonant angle variation of Mercury are in full agreement with those obtained by D'Hoedt & Lemaître (2004) and Rambaux & Bois (2004)
Do sagrado ao secular: a contribuição do saber médico para a construção dos cemitérios oitocentistas
Resumo:
Pós-graduação em História - FCHS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In a previous paper, the current state of knowledge of the region containing the Phocaea dynamical family was revised. Here, the dynamical evolution and possible origin of the Phocaea dynamical family and asteroid groups in the region are investigated. First, I study the case of asteroids at high eccentricity (e > 0.31). I find that these objects are unstable because of encounters with Mars on time-scales of up to 270 Myr. The minimum time needed by members of the Phocaea classical family to reach the orbital locations of these objects, 370 Myr, can be used to set a lower limit on the age of the Phocaea family.Next, attention is focused on the chaotic layer previously identified near the nu(6) secular resonance border. Using analytical and numerical tools, I find that the presence of the nu(6) secular resonance forces asteroids with vertical bar g-g(6)vertical bar < 2.55 arcsec yr(-1) to reach eccentricities high enough to allow them to experience deep, close encounters with Mars. Results of the analytical model of Yoshikawa and of my numerical simulations fully explain the low-inclination chaotic region found by Carruba.Finally, I investigate the long-term stability of the minor families and clumps identified in the previous paper, with particular emphasis on a clump only identifiable in the domain of proper frequencies (n, g, g - s) around (6246) Komurotoru. I find that while the clumps identified in the space of proper elements quickly disperse when the Yarkovsky effect is considered, the family around (19536) is still observable for time-scales of more than 50 Myr. The (6246) clump, characterized by its interaction with the nu(5) + nu(16) and 2 nu(6) - nu(16) secular resonances, is robust on time-scales of 50 Myr. I confirm that this group may be the first clump ever detected in the frequency domain that can be associated with a real collisional event.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Context. The V-type asteroids are associated with basaltic composition. Apart from ( 1459) Magnya, an asteroid that is clearly dynamically and mineralogically unconnected to the Vesta family, all currently known V-type asteroids are either members of the Vesta family, or are hypothesized to be former members of the dynamical family that migrated to their current orbital positions. The recent identification of ( 21238) 1995 WV7 as a V-type asteroid introduces the possibility that a second basaltic asteroid not connected with the Vesta family exists. This asteroid is on the opposite side of the 3: 1 mean motion resonance with respect to Vesta, and it would be very unlikely that a member of the Vesta family of its size (D > 5km) migrating via either the Yarkovsky effect or repeated close encounters with Vesta survived the passage through such a resonance.Aims. In this work we investigate the possibility that ( 21238) 1995 WV7 originated as a fragment of the parent body of the Eunomia family and then migrated via the interplay of the Yarkovsky effect and some powerful nonlinear secular resonances, such as the (s - s(6)) - ( g(5) - g(6)). If (15) Eunomia is, as claimed, a differentiated object whose originally pyroxene-enriched crust layer was lost in a collision that either created the Eunomia family or preceded its formation, can (21238) be a fragment of its long-lost basaltic crust that migrated to the current position?Methods. We mapped the phase space around (21238) and determined which of the nonlinear secular resonances that we identified are stronger and more capable of having caused the current difference in proper i between (21238) and members of the Eunomia family. We simulated the Yarkovsky effect by using the SWIFT-RMVSY integrator.Results. Our results suggest that it is possible to migrate from the Eunomia dynamical family to the current orbital location of ( 21238) via the interplay of the Yarkovsky effect and the (s - s6) - (g5 - g6) nonlinear secular resonance, on time-scales of at least 2.6 Gyr.Conclusions. (15) Eunomia might be the third currently known parent body for V-type asteroids.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)