18 resultados para Scattering medium
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We study the elastic scattering of positronium atoms by hydrogen atoms at medium energies using partial-wave Born-Oppenheimer (BO) exchange amplitudes and report accurate BO cross sections in the energy range 0 to 60 eV. The present BO results agree with a 22-state R-matrix and a five-state coupled-channel model potential calculation, but disagree strongly with a conventional close-coupling calculation as well as its input BO amplitudes at medium energies.
Resumo:
We present results for medium-energy elastic, inelastic [transition to He(1s2(1)s), He(1s2(1)p), He(1s3(1)s), and He(1s3(1)p) states], capture [to Ps(1s), Ps(2s), and Ps(2p) states of the positronium (Ps) atom] and total cross sections of positron-helium scattering in the close coupling approach using realistic wave functions.
Resumo:
A narrow S-wave resonance has been found in the positron-helium system at about 30 eV, using the close-coupling approach, in excitation and rearrangement cross sections to He(1s2s), He(1s2p), Ps(1s) and Ps(2s) states by employing different combinations of the following basis functions: He(1s1s), He(1s2s), He(1s2p), Ps(1s) and Ps(2s), where Ps stands for the positronium atom.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We perform a three-positronium (Ps) state [Ps(ls,2s,2p)] coupled-channel calculation of Ps-H-2 scattering including the effect of electron exchange. At medium energies, higher excitations and ionization of Ps are treated within the framework of the first Born approximation. In both cases exchange is included using a recently proposed nonlocal model exchange potential which is free of non-orthogonality problems common in the usual antisymmetrization scheme. The present total cross sections at low and medium energies are in encouraging agreement with experiment.
Resumo:
The scattering of ortho-positronium (Ps) by H-2 has been investigated using a three-Ps-state (Ps(1s,2s, 2p)H-2(X (1)Sigma(g)(+))) coupled-channel model and using the Born approximation for higher excitations and ionization of Ps and B (1)Sigma(u)(+) and b (3)Sigma(u)(+) excitations of H-2. We employ a recently proposed time-reversal-symmetric non-local electron-exchange model potential. We present a calculational scheme for solving the body-frame fixed-nuclei coupled-channel scattering equations for Ps-H-2, which simplifies the numerical solution technique considerably. Ps ionization is found to have the leading contribution to target-elastic and all target-inelastic processes. The total cross sections at low and medium energies are in good agreement with experiment.
Resumo:
The scattering of positrons off sodium targets has been investigated using the coupled static model. The sodium atom is represented by the one-active-electron model in which all the electrons of the target have been considered explicitly and the loosely bound valence electron is only involved in transitions. The scattering parameters are presented at low and medium energies. Appreciable differences are noticed between the present results and those obtained by the one-electron model with and without the core potential.
Resumo:
Positronium (Ps) formation in positron-helium scattering has been investigated in different partial waves at medium energies including the Ore gap region using the close-coupling approximation with realistic wavefunctions for the following states: He(1s1s), He(1s2s), He(1s2p), He(1s3s), He(1s3p), Ps(ls), Ps(2s), Ps(2p). Calculations are reported of rearrangement cross sections to Ps(ls), Ps(2s) and Ps(2p) states for incident positron energies up to 200 eV. The present partial cross sections are in good agreement with experimental results and a variational calculation in the Ore gap region.
Resumo:
Using variational and numerical solutions of the mean-field Gross-Pitaevskii equation we show that a bright soliton can be stabilized in a trapless three-dimensional attractive Bose-Einstein condensate (BEC) by a rapid periodic temporal modulation of scattering length alone by using a Feshbach resonance. This scheme also stabilizes a rotating vortex soliton in two dimensions. Apart from possible experimental application in BEC, the present study suggests that the spatiotemporal solitons of nonlinear optics in three dimensions can also be stabilized in a layered Kerr medium with sign-changing nonlinearity along the propagation direction.
Resumo:
The formulation of a suitable nonlocal model potential for electron exchange is presented, checked with electron-hydrogen and electron-helium scattering, and applied to the study of elastic and inelastic scattering and ionization of orthopositronium (Ps) by helium. The elastic scattering and the n=2 excitations of Ps are investigated using a three-Ps-state close-coupling approximation. The higher (n greater than or equal to 3) excitations and ionization of Ps atoms are treated in the framework of the Born approximation with present exchange. Calculations are reported of phase shifts and elastic, Ps excitation, and total cross sections. The present target elastic total cross section agrees well with experimental results at thermal to medium energies. [S1050-2947(99)04201-8].
Resumo:
The description of the short-range part of the nucleon-nucleon forces in terms of quark degrees of freedom is tested against experimental observables. We consider, for this purpose, a model where the short-range part of the forces is given by the quark cluster model and the long- and medium-range forces by well established meson exchanges. The investigation is performed using different quark cluster models coming from different sets of quark-quark interactions. The predictions of this model are compared not only with the phase shifts but also directly with the experimental observables. Agreement with the existing pp and np world set of data is poor. This suggests that the current description of the nucleon-nucleon interaction, at short distances, in the framework of the nonrelativistic quark models, is at present only qualitative.
Resumo:
Elastic and inelastic positron-helium scattering have been investigated in different partial waves at medium energies using the close-coupling approximation with realistic wavefunctions employing the following states: He(1s1s), He(1s2s), He(1s2p), He(1s3s), He(1s3p), Ps(1s), Ps(2s) and Ps(2p). All excitations of the helium atom are in the spin-singlet electronic state. Calculations are reported of cross sections to He(1s1s), He(1s2s), and He(1s2p) transitions for incident positron energies up to 200 eV. These cross sections are in good agreement with experimental results.
Resumo:
We present results for low- and medium-energy elastic and capture cross sections for positronium-atom-alkali-ion scattering using the coupled static close-coupling approximation.
Resumo:
The local and medium-range structures of siloxane-POE hybrids doped with Fe(III) ions and prepared by the sol-gel process were investigated by X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure (EXAFS) and small-angle X-ray scattering (SAXS), respectively. The experimental results show that the structure of these composites depends on the doping level. EXAFS data reveal that, for low doping levels ([O]/[Fe] > 40, oxygens being of the ether-type of the POE chains), Fe(III) ions are surrounded essentially by a shell of chlorine atoms, suggesting the formation of FeCl4- anions. At high doping levels ([O]/[Fe] < 20), Fe(III) ions interacts mainly with oxygen atoms and form FeOx species. The relative proportion of FeOx species increases with iron concentration, this result being consistent with the results of SAXS measurements showing that increasing iron doping induces the formation of iron-rich nanodomains embedded in the polymer matrix.
Resumo:
Positronium scattering off a hydrogen target has been studied employing a three-state positronium model close-coupling approximation (CCA) with and without electron exchange. Elastic, excitation and quenching cross sections are reported at low and medium energies. The effect of electron exchange is found to be significant at low energies. The ratio of quenching to the total cross section (the conversion ratio) approaches the value of 0.25 with increase of energy, as expected.