8 resultados para Scale Invariance
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We show that in SU(3)(C) circle times SU(3)(L) circle times U(1)(N) (3-3-1) models embedded with a singlet scalar playing the role of the axion, after imposing scale invariance, the breaking of Peccei-Quinn symmetry occurs through the one-loop effective potential for the singlet field. We, then, analyze the structure of spontaneous symmetry breaking by studying the new scalar potential for the model, and verify that electroweak symmetry breaking is tightly connected to the 3-3-1 breaking by the strong constraints among their vacuum expectation values. This offers a valuable guide to write down the correct pattern of symmetry breaking for multi-scalar theories. We also obtained that the accompanying massive pseudo-scalar, instead of acquiring mass of order of Peccei-Quinn scale as we would expect, develops a mass at a much lower scale, a consequence solely of the breaking via Coleman-Weinberg mechanism. (c) 2005 Published by Elsevier B.V.
Resumo:
By using the multiple scale method with the simultaneous introduction of multiple times, we study the propagation of long surface-waves in a shallow inviscid fluid. As a consequence of the requirements of scale invariance and absence of secular terms in each order of the perturbative expansion, we show that the Korteweg-de Vries hierarchy equations do play a role in the description of such waves. Finally, we show that this procedure of eliminating secularities is closely related to the renormalization technique introduced by Kodama and Taniuti. © 1995 American Institute of Physics.
Resumo:
The scale invariance manifested by the weakly-bound Efimov states implies that all the Efimov spectrum can be merged in a single scaling function. By considering this scaling function, the ratio between two consecutive energy levels, E3 (N+1) and E3 (N), can be obtained from a two-body low-energy observable (usually the scattering length a), given in units of the three-body energy level N. The zero-ranged scaling function is improved by incorporating finite range corrections in first order of r0/a (r0 is the potential effective range). The critical condition for three-identical bosons in s-wave, when the excited E3 (N+1) state disappears in the 2 + 1 threshold, is given by √E2/E3 (N) ≈ 0.38+0.12(r0/a). © 2012 Springer-Verlag.
Resumo:
Critical exponents that describe a transition from unlimited to limited diffusion for a ratchet system are obtained analytically and numerically. The system is described by a two dimensional nonlinear mapping with three relevant control parameters. Two of them control the non-linearity while the third one controls the intensity of the dissipation. Chaotic attractors appear in the phase space due to the dissipation and considering large non-linearity are characterised by the use of Lyapunov exponents. The critical exponents are used to overlap different curves of average momentum (dynamical variable) onto a single plot confirming a scale invariance. The formalism used is general and the procedure can be extended to different systems.
Resumo:
We propose a framework to renormalize the nonrelativistic quantum mechanics with arbitrary singular interactions. The scattering equation is written to have one or more subtraction in the kernel at a given energy scale. The scattering amplitude is the solution of a nth order derivative equation in respect to the renormalization scale, which is the nonrelativistic counterpart of the Callan-Symanzik formalism, Scaled running potentials for the subtracted equations keep the physics invariant fur a sliding subtraction point. An example of a singular potential, that requires more than one subtraction to renormalize the theory is shown. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)