32 resultados para Sands
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Antimicrobial resistance of marine heterotrophic bacteria to different antimicrobials agents were evaluated in seawater, dry and wet sands from three marine recreational beaches with different pollution levels. In all studied beaches, the greatest frequencies of resistance were found in relation to penicillin. on Gonzaguinha, the most polluted beach, 72.3% of all isolated strains showed simple resistance, whilst 8.33% had multiple resistance. The values found on Ilha Porchat beach, were 70.8% and 6.9% for simple and multiple resistances, respectively. on GuaraA(0), the less polluted beach, only 35.3% of isolated strains had simple resistance. Multiple resistance was not observed. While samples from Gonzaguinha and Ilha Porchat beach showed isolated strains resistant to seven and six different antimicrobial agents, respectively, samples from GuaraA(0) beach were resistant only to penicillin and erytromicin. The positive correlations obtained between the degree of seawater contamination and frequency and variability of bacterial resistance indicate that polluted marine recreational waters and sands are sources of resistant bacteria contributing thus, to the dissemination of bacterial resistance.
Resumo:
Density, species composition and antimicrobial resistance in bacteria of the Enterococcus genus were evaluated in seawater and sands from 2 marine recreational beaches with different levels of pollution. The 2 beaches showed predominance of Enterococcus faecalis and Enterococcus faecium, in the water and the sand. Dry sand presented higher densities of Enterococcus sp. and higher frequency of resistant strains than wet sand and seawater. The beach with a higher degree of pollution presented higher percentages of resistant strains (66.7% and 61.5%, in sand and in water, respectively) and resistance to a larger number of antimicrobials compared with the less polluted beach, Ilha Porchat (35.7% and 31.25% of resistant strains in sand and water, respectively). in water samples, the highest frequencies of resistance were obtained against streptomycin (38.5%) and erythromycin (25%), whilst in sand, the highest frequencies were observed in relation to erythromycin and tetracycline (38.1% and 14.3%, respectively). These results show that water and sands from beaches with high indexes of faecal contamination of human origin may be potential sources of contamination by pathogens and contribute to the dissemination of bacterial resistance. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Bacterial resistance is a rising problem all over the world. Many studies have showed that beach sands can contain higher concentration of microorganisms and represent a risk to public health. This paper aims to evaluate the densities and resistance to antimicrobials of Escherichia coli strains, isolated from seawater and samples. The hypothesis is that microorganisms show higher densities in contaminated beach sands and more antimicrobial resistance than the water column. Density, distribution, and antimicrobial resistance of bacteria E. coli were evaluate in seawater and sands from two recreational beaches with different levels of pollution. At the beach with higher degree of pollution (Gonzaguinha), water samples presented the highest densities of E. coli; however, higher frequency of resistant strains was observe in wet sand (71.9 %). Resistance to a larger number of antimicrobial groups was observe in water (betalactamics, aminoglycosides, macrolides, rifampicins, and tetracyclines) and sand (betagalactamics and aminoglycosids). In water samples, highest frequencies of resistance were obtain against ampicilin (22.5 %), streptomycin (15.0 %), and rifampicin (15.0 %), while in sand, the highest frequencies were observe in relation to ampicilin (36.25 %) and streptomycin (23.52 %). At the less polluted beach, Ilha Porchat, highest densities of E. coli and higher frequency of resistance were obtain in wet and dry sand (53.7 and 53.8 %, respectively) compared to water (50 %). Antimicrobial resistance in strains isolated from water and sand only occurred against betalactamics (ampicilin and amoxicilin plus clavulanic acid). The frequency and variability of bacterial resistance to antimicrobials in marine recreational waters and sands were related to the degree of fecal contamination in this environment. These results show that water and sands from beaches with a high index of fecal contamination of human origin may be potential sources of contamination by pathogens and contribute to the dissemination of bacterial resistance.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Pantanal is a tectonic depression located at the left margin of the Upper Paraguay River. The Paraguay is the trunk river of an alluvial depositional tract composed by several large marginal alluvial fans, the Taquari fan being the largest one. The present landscape is a complex tropical wetland characterized by month-long floods every year, with geomorphic features derived from the present conditions and others inherited from successive Pleistocene and Holocene climates. Some areas containing ponds are landscape relicts generated by eolian deflation during the Last Glacial Maximum. Many ponds, closed depressions isolated from the superficial waters by vegetated crescent ridges of fine sands, were interpreted as salt pans bordered by lunette sand dunes. Initiation of the modern wetland has occurred during the Pleistocene/Holocene transition, with the change to a more humid climate and the individualization of lacustrine systems. Active tectonics has been playing an important role in the development of the Pantanal landscape. Nowadays, the Paraguay River meanders in a large flood plain with extensive swamp surfaces, being structurally constrained by faults in the west border of the basin. Sedimentation within the Pantanal wetland is also affected by tectonic activity, especially along faults associated with the Transbrasiliano Lineament. (C) 2003 Elsevier B.V. Ltd and INQUA. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In waterlogged environments of the upper Amazon basin, organic matter is a major driver in the podzolisation of clay-depleted laterites, especially through its ability to weather clay minerals and chelate metals. Its structure in eight organic-rich samples collected at the margin and in the centre of the podzolic area of a soil sequence was investigated. The samples illustrate the main steps in the development of waterlogged podzols and belong either to eluviated topsoil A horizons or to illuviated subsoil Bhs, Bh and 2BCs horizons. Organic matter micromorphology was described, and the overall molecular structure of their clay size fractions was assessed using Fourier transform infrared (FTIR) spectroscopy and cross polarization/magic angle spinning (CP/MAS) C-13 nuclear magnetic resonance (NMR). Organic features of the horizons strongly vary both vertically and laterally in the sequence. Topsoil A horizons are dominated by organic residues juxtaposed to clean sands with a major aliphatic contribution. In the subsoil, numerous coatings, characteristic of illuviation processes, are observed in the following horizons: (i) At the margin and bottom parts of the podzolic area, dark brown organic compounds of low aromacity with abundant oxygen-containing groups accumulate in Bhs and 2BCs horizons. Their spectroscopic features agree with the observation of cracked coatings in 2BCs and the presence of organometallic complexes, whose abundance decreases towards low lying positions. (ii) By contrast, black organic compounds of high aromacity with few chelating functions accumulate as coatings and infills in the overlying sandy Bh horizon of well-expressed waterlogged podzols. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Morphological, geochemical and mineralogical studies were carried out in a representative soil catena of the low-elevation plateaux of the upper Amazon Basin to interpret the steps and mechanisms involved in the podzolization of low-activity clay soils. The soils are derived from Palaeozoic sandstones. They consist of Hydromorphic Podzols under tree savannah in the depressions of the plateaux and predominantly of Acrisols covered by evergreen forest elsewhere.Incipient podzolization in the uppermost Acrisols is related to the formation of organic-rich A and Bhs horizons slightly depleted in fine-size particles by both mechanical particle transfer and weathering. Weathering of secondary minerals by organic acids and formation of organo-metallic complexes act simultaneously over short distances. Their vertical transfer is limited. Selective dissolution of aluminous goethite, then gibbsite and finally kaolinite favour the preferential cheluviation of first Fe and secondly Al. The relatively small amount of organo-metallic complexes produced is related to the quartzitic parent materials, and the predominance of Al over Fe in the spodic horizons is due to the importance of gibbsite in these low-activity clay soils.Morphologically well-expressed podzols occur in strongly iron-depleted topsoils of the depression. Mechanical transfer and weathering of gibbsite and kaolinite by organic acids is enhanced and leads to residual accumulation of sands. Organo-metallic complexes are translocated in strongly permeable sandy horizons and impregnate at depth the macro-voids of embedded soil and saprolite materials to form the spodic Bs and 2BCs horizons. Mechanical transfer of black particulate organic compounds devoid of metals has occurred later within the sandy horizons of the podzols. Their vertical transfer has formed well-differentiated A and Bh horizons. Their lateral removal by groundwater favours the development of an albic E horizon. In an open and waterlogged environment, the general trend is therefore towards the removal of all the metals that have initially accumulated as a response to the ferralitization process and have temporarily been sequestrated in organic complexes in previous stages of soil podzolization.
Resumo:
The foundry sand agglomerated with alkaline phenolic resin, used for the manufacture of molds, was found to be a residue which is able to be recycled, minimizing the costs of disposal and the environmental impact. This paper analyzes the thermomechanical regeneration and leaching processes and also assesses the influence of additives on the improvement of the mechanical properties of the sands. Besides, the industrial experiments carried out at CSN aiming at the foundry sand recycling in the covering of the blast furnace troughs are presented. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The Pleistocene Chui Formation at Osorio (Rio Grande do Sul, Brazil) consists of coastal marine and eolian sands, the former containing abundant and well-preserved Ophiomorpha nodosa burrow systems. Detailed ichnological study has revealed interesting features associated with them. Small-sized Ophiomorpha, here assigned to a new ichnospecies, O. puerilis, are interpreted as possible burrows of juvenile thalassinidean crustaceans probably belonging to the same species as the producers of larger O. nodosa. Additionally, helicoidal burrows with thick, concentrically laminated linings are associated with the walls of O. nodosa. They are assigned to the new ichnospecies Cylindrichnus helix, and they are interpreted as dwellings of commensal annelid worms. The association of these three icbnospecies constitutes a fossil example of the role of thalassinideans as ecosystem engineers able to modify their environment and to create new space and resources usable by other organisms. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Beach deposits occur in high energy environments with continual sorting by swash and backswash. The fines are removed by the backswash, which is not competent to remove the coarser material. Hence negative asymmetry (skewness) results. The wind transports only the finer fraction to the dunes, resulting in a tendency towards a positively skewed distribution. In the case studied the aeolian sand has a mean asymmetry of 0.13, the beach sand -0.11. Equivalent values for mean grain size and standard deviation are 2.51 and 0.24 (aeolian) and 2.41 and 0.37 (beach). Beach sands are therefore coarser and less well sorted than aeolian sands. -V.Gardiner
Resumo:
The following soil classes were identified in the studied area: Quartz Sands (AQ), Yellow Red Podzolic, Dusky Red Latosol (LR), 'Terra Roxa estruturada' (TE), Lithosol substrate sandstone (Lia) and Hidromorphic (Hi). The dimensional analysis method allowed: a) to group the watershed whose percentage (60%) are showing predominance of the same soil (Quartz Sands) and which located in the same relief; b) to group watersheds with different soil classes, but with similar percentages. -from English summary