30 resultados para SYNAPTIC HOMEOSTASIS

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work evaluated the potential of the isoforms of methamidophos to cause organophosphorus-induced delayed neuropathy (OPIDN) in hens. In addition to inhibition of neuropathy target esterase (NTE) and acetylcholinesterase (AChE), calpain activation, spinal cord lesions and clinical signs were assessed. The isoforms (+)-, (+/-)- and (-)-methamidophos were administered at 50 mg/kg orally; tri-ortho-cresyl phosphate (TOCP) was administered (500 mg/kg, po) as positive control for delayed neuropathy. The TOCP hens showed greater than 80% and approximately 20% inhibition of NTE and AChE in hen brain, respectively. Among the isoforms of methamidophos, only the (+)-methamidophos was capable of inhibiting NTE activity (approximately 60%) with statistically significant difference compared to the control group. Calpain activity in brain increased by 40% in TOCP hens compared to the control group when measured 24h after dosing and remained high (18% over control) 21 days after dosing. Hens that received (+)-methamidophos had calpain activity 12% greater than controls. The histopathological findings and clinical signs corroborated the biochemical results that indicated the potential of the (+)-methamidophos to be the isoform responsible for OPIDN induction. Protection against OPIDN was examined using a treatment of 2 doses of nimodipine (1 mg/kg, i.m.) and one dose of calcium gluconate (5 mg/kg, iv.). The treatment decreased the effect of OPIDN-inducing TOCP and (+)-methamidophos on calpain activity, spinal cord lesions and clinical signs. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: the administration of cyclosporin A has been associated with significant bone loss and increased bone remodeling. The present investigation was designed to evaluate the effects of cyclosporin A on alveolar bone of rats subjected to experimental periodontitis, using serum, stereometric and radiographic analysis.Methods: Twenty-four rats were divided into one of the following groups with six animals each: group I, control rats; group II, in which the animals received a cotton ligature around the lower first molars; group III, in which the rats received a cotton ligature around the lower first molars and were treated with 10 mg/(kg body weight day) of cyclosporin A; group IV, in which the rats were treated with 10 mg/(kg body weight day) of cyclosporin A. At the end of experimental period, at 30 days, animals were killed and the serum calcium and alkaline phosphatase levels were measured in all groups. The distance from the alveolar bone crest to the cemento-enamel junction was measured radiographically for each mesial surface of the lower first molars of each rat. After histological processing, the stereological parameters: volume densities of multinucleated osteoclasts (V-o), alveolar bone (V-b), marrow (V-m), and relation of eroded surface/bone surface (Es/Bs) were assessed at the mesial region of the alveolar bone.Results: Significant decreases in serum calcium were observed in those groups that received cyclosporin A therapy. No significant changes in serum alkaline phosphatase were observed. The therapy with cyclosporin A combined with the ligature placement decreased the V-b and increased the V-o, V-m and Es/Bs at the mesial surface of lower first molars. on the other hand, the radiographic data showed that cyclosporin A therapy diminished the alveolar bone loss at the mesial surface of the lower first molars.Conclusions: Therefore, within the limits of this study, we suggest that cyclosporin A at immunosuppressive levels can bring about an imbalance in the alveolar bone homeostasis in rats. However, in the presence of inflammatory stimulation, the inhibition of the immune system by cyclosporin A may decrease the initial periodontal breakdown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the effects of L-NG-nitro arginine methyl esther (L-NAME), L-arginine (LAR), inhibitor and a donating nitric oxide agent on the alterations of salivary flow, water intake, arterial blood pressure (MAP) and heart rate (HR) induced by the injection pilocarpine into the subfornical organ (SFO). Rats (Holtzman 250-300 g) were anesthetized with 2, 2, 2-tribromoethanol (20 mg/100 kg b. wt.) and a stainless steel carmula were implanted into their SFO. The volume of injection was 0.2 mu l. The amount of saliva secretion was studied over a 5-min period. Pilocarpine (40 mu g), L-NAME (40 mu g) and LAR (30 mu g) were used in all experiments for the injection into the SFO. Pilocarpine (10, 20, 40, 80 and 160 mu g) injected into SFO elicited a concentration-dependent increase in salivary secretion. L-NAME injected prior to pilocarpine into the SFO increased salivary secretion and water intake due to the effect of pilocarpine. LAR injected prior to pilocarpine into the SFO attenuated the salivary secretion and water intake. Pilocarpine, injected into the SFO increased the MAP and decreased heart rate (HR). L-NAME injected prior to pilocarpine into the SFO potentiated the pressor effect of pilocarpine with a decrease in HR. LAR injected into the SFO prior to pilocarpine attenuated the increase in MAP with no changes in HR. The present study suggests that the SFO nitrergic cells interfere in the cholinergic pathways implicated in the control of salivary secretion, fluid and cardiovascular homeostasis. (c) 2007 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Afferents to the primary startle circuit are essential for the elicitation and modulation of the acoustic startle reflex (ASR). In the rat, cochlear root neurons (CRNs) comprise the first component of the acoustic startle circuit and play a crucial role in mediating the ASR. Nevertheless, the neurochemical pattern of their afferents remains unclear. To determine the distribution of excitatory and inhibitory inputs, we used confocal microscopy to analyze the immunostaining for vesicular glutamate and GABA transporter proteins (VGLUT1 and VGAT) on retrogradely labeled CRNs. We also used reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry to detect and localize specific neurotransmitter receptor subunits in the cochlear root. Our results show differential distributions of VGLUT1- and VGAT-immunoreactive endings around cell bodies and dendrites. The RT-PCR data showed a positive band for several ionotropic glutamate receptor subunits, M1-M5 muscarinic receptor subtypes, the glycine receptor alpha 1 subunit (GlyR alpha 1), GABA(A), GABA(B), and subunits of alpha 2 and beta-noradrenergic receptors. By immunohistochemistry, we confirmed that CRN cell bodies exhibit positive immunoreaction for the glutamate receptor (GluR) 3 and NR1 GluR subunits. Cell bodies and dendrites were also positive for M2 and M4, and GlyR alpha 1. Other subunits, such as GluR1 and GluR4 of the AMPA GluRs, were observed in glial cells neighboring unlabeled CRN cell bodies. We further confirmed the existence of nor-adrenergic afferents onto CRNs from the locus coeruleus by combining tyrosine hydroxylase immunohistochemistry and tract-tracing experiments. Our results provide valuable information toward understanding how CRNs might integrate excitatory and inhibitory inputs, and hence how they could elicit and modulate the ASR. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the alterations of glucose homeostasis and variables of the insulin-like growth factor-I (IGF- 1) growth system in sedentary and trained diabetic (TD) rats, Wistar rats were divided into sedentary control (SC), trained control (TC), sedentary diabetic (SD), and TD groups. Diabetes was induced by Alloxan (35 mg kg(-1) b.w.). Training program consisted of swimming 5 days week(-1), 1 h day(-1), during 8 weeks. Rats were sacrificed and blood was collected for determinations of serum glucose, insulin, growth hormone (GH), IGF-1, and IGF binding protein-3(IGFBP-3). Muscle and liver were removed to evaluate glycogen content. Cerebellum was extracted to determinate IGF-1 content. Diabetes decreased serum GH, IGF-1, IGFBP-3, liver glycogen, and cerebellum IGF-1 peptide content in baseline condition. Physical training recovered liver glycogen and increased serum and cerebellum IGF-1 peptide in diabetic rats. Physical training induces important metabolic and hormonal alterations that are associated with an improvement in glucose homeostasis and serum and cerebellum IGF-1 concentrations. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Animal models appear well-suited for studies into the role of exercise in the prevention of non-insulin-dependent diabetes mellitus (NIDDM). The aim of the present study was to analyze glucose homeostasis and blood lactate during an exercise swimming test in rats treated with alloxan during the neonatal period and/or fed a high calorie diet from weaning onwards.Methods: Rats were injected with alloxan (200 mg/kg, i.p.) or vehicle (citrate buffer) at 6 days of age. After weaning, rats were divided into four groups and fed either a balanced diet or a high-caloric diet as follows: C, control group (vehicle + normal diet); A, alloxan-treated rats fed the normal diet; H, vehicle-treated rats fed the high-caloric diet; and HA, alloxan-treated rats fed the high-caloric diet.Results: Fasting serum glucose levels were higher in groups A and AH compared with the control group. The Homeostatic Model Assessment index varied in the groups as follows: H > A > HA = C. There were no differences in free fatty acids or blood lactate concentrations during the swim test.Conclusions: Alloxan-treated rats fed a normal or high-caloric diet have the potential to be used in studies analyzing the role physical exercise plays in the prevention of NIDDM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the effect of alloxan on insulin secretion and glucose homeostasis in rats maintained on a 17% protein (normal protein, NP) or 6% protein (low protein, LP) diet from weaning (21 days old) to adulthood (90 days old). The incidence of alloxan diabetes was higher in the NP (3.5 times) than in the LP group. During an oral glucose tolerance test, the area under serum glucose curve was lower in LP (57%) than in NP rats while there were no differences between the two groups in the area under serum insulin curve. The serum glucose disappearance rate (Kitt) after exogenous insulin administration was higher in LP (50%) than in NP rats. In pancreatic islets isolated from rats not injected with alloxan, acute exposure to alloxan (0.05 mmol/L) reduced the glucose- or arginine-stimulated insulin secretion of NP islets by 78% and 56%, respectively, whereas for islets from LP rats, the reduction was 47% and 17% in the presence of glucose and arginine, respectively. Alloxan treatment reduced the glucose oxidation in islets from LP rats to a lesser extent than in NP islets (23% vs. 56%). In conclusion, alloxan was less effective in producing hyperglycemia in rats fed a low protein diet than in normal diet rats. This effect is attributable to an increased peripheral sensivity to insulin in addition to a better preservation of glucose oxidation and insulin secretion in islets from rats fed a low protein diet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, we examined the effects of feeding a low protein diet during pregnancy on glucose-induced insulin secretion and glucose homeostasis in rats. Young (60 days), pregnant (P) or non-pregnant (NP) rats were fed during pregnancy or for 21 days (the NP) a normal (17%) or a low (6%) protein diet. Serum glucose and insulin levels and pancreas insulin content in the fed state; total area under serum glucose curve (AG) after a glucose load and serum glucose disappearance rate (Kitt) after insulin administration; as well as 86Rb outflow, 45Ca uptake and insulin secretion by isolated pancreatic islets in response to glucose were evaluated. Serum glucose was lower in 17%-P (12%) and 6%-P (27%) than in corresponding NP-rats. Serum insulin was higher in 17%- P (153%) and 6%-P (77%) compared to the corresponding NP-rats. Pancreatic insulin was higher in 6%-rats (55%) than in 17%-rats. No differences were found in AG among the groups whereas Kitt was lower in 6%-NP and higher in 6%-P than in the equivalent 17% rats. Increasing glucose concentration from 2.8 to 16.7 mmol/l, reduced 86Rb outflow from isolated islets from all groups. Increasing glucose concentration from 2.8 to 16.7 mmol/l elevated 45Ca uptake by 17%-NP (47%), 17%-P (40%) and 6%-P (214%) islets but not by 6%-NP ones. The increase in 45Ca uptake was followed by an increase in insulin release by the 17%-NP (2767%), 17%-P (2850%) and 6%-P (1200%) islets. In conclusion, 6%-P rats show impaired glucose induced insulin secretion related to reduced calcium uptake by pancreatic islets. However, the poor insulin secretion did not fully compensate the high peripheral sensitivity to the hormone, resulting in hypoglycemia.