43 resultados para SYMPLECTIC MAPS

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work, we quantify the fraction of trajectories that reach a specific region of the phase space when we vary a control parameter using two symplectic maps: one non-twist and another one twist. The two maps were studied with and without a robust torus. We compare the obtained patterns and we identify the effect of the robust torus on the dynamical transport. We show that the effect of meandering-like barriers loses importance in blocking the radial transport when the robust torus is present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Dirac eigenvalues form a subset of observables of the Euclidean gravity. The symplectic two-form in the covariant phase space could be expressed, in principle, in terms of the Dirac eigenvalues. We discuss the existence of the formal solution of the equations defining the components of the symplectic form in this framework. (C) 2002 Published by Elsevier B.V. B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basic arguments underlying the symplectic. projector method are presented. By this method, local free coordinates on the constraint surface can be obtained for a broader class of constrained systems. Some interesting examples are analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an alternative formalism to simulate cosmic microwave background (CMB) temperature maps in Lambda CDM universes with nontrivial spatial topologies. This formalism avoids the need to explicitly compute the eigenmodes of the Laplacian operator in the spatial sections. Instead, the covariance matrix of the coefficients of the spherical harmonic decomposition of the temperature anisotropies is expressed in terms of the elements of the covering group of the space. We obtain a decomposition of the correlation matrix that isolates the topological contribution to the CMB temperature anisotropies out of the simply connected contribution. A further decomposition of the topological signature of the correlation matrix for an arbitrary topology allows us to compute it in terms of correlation matrices corresponding to simpler topologies, for which closed quadrature formulas might be derived. We also use this decomposition to show that CMB temperature maps of (not too large) multiply connected universes must show patterns of alignment, and propose a method to look for these patterns, thus opening the door to the development of new methods for detecting the topology of our Universe even when the injectivity radius of space is slightly larger than the radius of the last scattering surface. We illustrate all these features with the simplest examples, those of flat homogeneous manifolds, i.e., tori, with special attention given to the cylinder, i.e., T-1 topology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this note we study coincidence of pairs of fiber-preserving maps f, g : E-1 -> E-2 where E-1, E-2 are S-n-bundles over a space B. We will show that for each homotopy class vertical bar f vertical bar of fiber-preserving maps over B, there is only one homotopy class vertical bar g vertical bar such that the pair (f, g), where vertical bar g vertical bar = vertical bar tau circle f vertical bar can be deformed to a coincidence free pair. Here tau : E-2 -> E-2 is a fiber-preserving map which is fixed point free. In the case where the base is S-1 we classify the bundles, the homotopy classes of maps over S-1 and the pairs which can be deformed to coincidence free. At the end we discuss the self-coincidence problem. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let f: M -> M be a fiber-preserving map where S -> M -> B is a bundle and S is a closed surface. We study the abelianized obstruction, which is a cohomology class in dimension 2, to deform f to a fixed point free map by a fiber-preserving homotopy. The vanishing of this obstruction is only a necessary condition in order to have such deformation, but in some cases it is sufficient. We describe this obstruction and we prove that the vanishing of this class is equivalent to the existence of solution of a system of equations over a certain group ring with coefficients given by Fox derivatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)